Status of Muon Remove Electron Study for Neutrino-Electron Elastic Scattering in the NOuA Near Detector

Barnali Brahma

On Behalf of NO ν A Collaboration June 21,2022 FERMILAB-SLIDES-22-047-ND-V

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Barnali Brahma

The NO ν A Experiment

- NO ν A is a long-baseline neutrino experiment
 - 2 detectors, 14 mrad off-axis, 810 km apart
 - optimized for detection of $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$
- Near Detector receives high neutrino flux which
 - acts as a control for the oscillation analyses
 - provide rich data set for determining cross-sections

Far Detector

Near Detector

Barnali Brahma

June 21,2022

! / 23

Neutrino Flux

• The accelerator neutrino beams have large uncertainties from hadron productions on targets

 These large uncertainty in the absolute neutrino flux affects the near detector cross-section measurements and far detector oscillation analyses

Barnali Brahma

Neutrino-electron Elastic Scattering in NO νA

• Neutrino-electron elastic scattering is a pure leptonic process whose cross-section can be precisely calculated in the standard model.

• Therefore, it will provide a substantial constraint on the neutrino flux prediction to reduce the total uncertainty at NO ν A and will also help us to demonstrate a flux constraint method for DUNE.

Barnali Brahma

New Perspective 2022

• $\nu - e$ elastic scattering is an elastic two-body collision, and the kinematics are given by

$$E_e\theta_e^2=2m_e(1-y)$$

where E_e is the energy of the most energetic EM shower, θ is the angle w.r.t the beam and y is the ratio of the electron's kinetic energy to the total neutrino energy.

- Since y can vary between 0 to 1. $E_e \theta_e^2$ is less than $2m_e$
- Signal \rightarrow very forward going single prong events with small $E_e \theta_e^2$ peaking around zero.

- After the electron selection, dominant background $\rightarrow \nu_e$ charged current events.
- Due to large momentum transfer, the $E_e \theta^2$ distribution for ν_e CC events appears to be flat.
- So, the νe elastic scattering signal can be selected with a high background rejection rate by requiring $E_e \theta^2$ to be small.

Events/1.37x10²¹ POT き ⁸ ⁸ Signal Bka: All Bkg: v_a CC Bkg: v_u CC Bka: NC 20 0.006 0.008 0 002 0.004 E.0² [GeV.rad²]

What is MRE?

- MRE stands for Muon-Removed Electron-added
- Constructed by removing hits from reconstructed muon candidate in ν_{μ} CC interactions and generating an electron in its place
- Muons in NO ν A appear as long, clean tracks and are the distinguishing feature of a ν_{μ} CC interaction

Barnali Brahma

• The removal of information about the outgoing muon in a ν_{μ} CC interaction produces what is known as a Muon-Removed Charged Current or MRCC event.

What is MRE?

- For each muon removed from the spill, an electron is generated in its place.
- The resulting electron has the same energy as the removed muon, but a different momentum.
- Once the simulated electron hits are generated, they are overlaid with the hits of the MRCC event to get the final MRE event.

MRE Selection Study

• True Signal Definition

- Interaction Type (Neutrino Electron Elastic Scatter)
- True Fiducial Cut
 - \rightarrow Min X Y Z (cm) : -130, -150, 160
 - \rightarrow Max X Y Z (cm) : 155, 160, 1080

• Pre-Selection

- Single Prong Selection
- Fiducial Volume Cut \rightarrow ensures all events are well contained within the fiducial volume of the detector
- Containment Cut \rightarrow ensures neutrinos interacted within the detector and rejects cosmic ray background
- MRE Cuts \rightarrow looks out for ν_{μ} CC interaction on which we can perform MRE procedure

• Full-Selection

- Pre-selection
- $\bullet~$ Identifiers $Cuts \rightarrow$ Electron Prong CVN , Nue ID and Elec ID
- Energy Cuts \rightarrow Hadron Energy, Prong 3D Vertex Energy and CalE energy

MRE Selection

- Nominal MRE MC files are used and plots are normalised to MC POT
 Selections are applied one after another and reduction in background
- events are noted.

Barnali Brahma

New Perspective 2022

Selection Efficiency Study

- **Pre-Selection** = Single Prong Selection +Fiducial Volume + Containment Cut + MRE Cut
- Full Selection = Pre-selection+ProngCVN+NueID+ElecID+HadE+ Prong3DVtx+CalE

File	Pre-Selection	Full-Selection	% Bkg Reduction
MRE-MC	15564.5	3086.13	80%
MRE-Data	13956.1	2922.63	79%
MC Light Up	15242	3096.67	79.7%
MC Light Down	15637.4	3199.13	79.5%
Calib up	14572.9	2713.56	81%
Calib Down	16381.7	3341.81	79.6%
Cheren Up	15450	3181.64	79%
Cheren Down	15599.8	3157.05	79.8%

Efficiency and Efficiency Ratio Study: MC Nominal

FHC	Pre-Sel	Full-Sel	Efficiency	Difference
DATA	13956.10	2922.63	0.209	
MC	15564.50	3086.13	0.198	+0.011

Selection Efficiency: MC Light Level

FHC	Pre-Sel	Full-Sel	Efficiency	Difference
MC	15564.50	3086.13	0.198	
lightlevel Up	15242.00	3096.67	0.203	+0.005
lightlevel Down	15637.40	3199.13	0.204	+0.006

Selection Efficiency: MC Calibration

FHC	Pre-Sel	Full-Sel	Efficiency	Difference
MC	15564.50	3086.13	0.198	
Calibration Up	14572.90	2713.56	0.186	-0.012
Calibration Down	16381.7	3341.81	0.204	+0.006

Selection Efficiency: MC Cherenkov

FHC	Pre-Sel	Full-Sel	Efficiency	Difference
MC	15564.50	3086.13	0.198	
Cherenkov Up	15450.00	3181.64	0.206	+0.008
Cherenkov Down	15599.80	3157.05	0.202	+0.004

Summary

• From the selection efficiency study, here is a summary of all the systematic uncertainty:

Norm to MRE DATA POT	MRE Pre- Selection	Full Selection	Efficiency	Difference	$\frac{N^{D.S}-N^{MC}}{N^{MC}}$	Uncertainty	Overall MC Uncertainty
Nominal MC	15564.50	3086.13	0.198				
Lightlevel Up MC	15242.00	3096.67	0.203	+0.005	+0.0034		
Lightlevel Down MC	15637.40	3199.13	0.204	+0.006	+0.0366	+0.0366	
Calibration Up MC	14572.90	2713.56	0.186	-0.012	-0.1207		0.13
Calibration Down MC	16381.70	3341.81	0.204	+0.006	+0.0828	-0.1207	
Cherenkov Up MC	15450.00	3181.64	0.206	+0.008	+0.0309	+0.0309	
Cherenkov Down MC	15599.80	3157.05	0.202	+0.004	+0.0229		

Barnali Brahma

New Perspective 2022

- Using all systematic files to estimate the total detector uncertainties
- Working on covariance and correlation matrix
- Next use the MRE results to apply constraint on the background.

Thank You !!

BACKUP SLIDES

Selections

Event Selections

- Single Prong Selection: vtx.elastic.fuzzyk.npng == 1
- Reco Fiducial Volume cuts Vertex X, Y, Z min(in cm) \longrightarrow -130, -150, 160 Vertex X, Y, Z max(in cm) \longrightarrow 155, 160, 1080
- Reco Containment cut similar to the nueCC inclusive

Selections

- Electron ProngCVN kvProngCVN > 0.89
- Electron ID kv5labelElecID > 0.5
- Nue ID
 - kvNueID > -0.05
- Hadron Energy kCVNhadE < 0.035 [GeV]
- Prong 3D Vertex Energy
 0.0 < kProng3DvertexEnergyVol10 < 0.03 [GeV.rad²]
- CalE Energy kShowCalE < 4.1 [GeV]

Events

- Pre-Selection = Single Prong Selection +Fiducial Volume + Containment Cut + MRE Cut
- Full Selection =

$$\label{eq:pre-selection} \begin{split} \mathsf{Pre-selection} + \mathsf{ProngCVN} + \mathsf{NueID} + \mathsf{ElecID} + \mathsf{HadE} + \mathsf{CalE} + \\ \mathsf{Prong3DVtx} \end{split}$$

Selection	MRE MC	MRE Data
Pre-Selection	203910	173340
ProngCVN	78432	72930
NuelD	67682	62601
Elec ID	41365	38201
Had E	8625	7668
Cal E	7905	6803
Prong3DVtx	3063	2922