Status of the measurement of the v_{μ} CC Coherent π^+ Production in the NOvA Near Detector

On behalf of the NOvA collaboration

Chatura Kuruppu

SOUTH CAR

University of South Carolina

Fermilab New Perspectives 2022

The NOvA Experiment

- A neutrino oscillation experiment with 810 km baseline, two structurally identical detectors, NuMI ν_{μ} 700 kW beam, off-axis

Main physics goals:

- $\nu_{\mu} \rightarrow \nu_{e}$ Oscillations
- Cross-section studies
- Sterile Neutrino studies
- Exotics

Far Detector

Near Detector

• More...

High statistics collected at the Near Detector can be used to study neutrino cross sections!

Chatura Kuruppu

University of South Carolina

Fermilab New Perspectives 202201

NOvA Beam Flux

- Near detector is 14.5 mrads off-axis and flux has a peak between 1 and 5 GeV
- receives high neutrino flux contains 96% pure v_{μ} beam and 1% of v_e and \bar{v}_e
- provides a rich data set for measuring cross sections

Chatura Kuruppu

The NOvA Near Detector

NOvA Near Detector located at MINOS underground facility

Array of wavelength shifting fibers ends interface with avalanche photo diode

Side view of NOvA Near Detector and Muon catcher

Wavelength shifting fibers read out by a single pixel on Avalanche Photodiode

Chatura Kuruppu

University of South Carolina

Fermilab New Perspectives 2022 03

Charged Current Coherent Interaction

- An inelastic interaction produces a lepton and a pion in the forward direction
- Nucleus (A) stays in its initial state

• The square of the four-momentum exchanged with the nucleus, |t|, must be small

Chatura Kuruppu

Motivation

Theoretical Interests:

Coherent models are not well tested

Provides detailed tests for hypothesis such as:

- CVC (Conserved Vector Current)
- PCAC (Partially Conserved Axial Current)
- HDM (Hadron Dominance Model)

• Experimental Interests:

Reconstructing E_{ν} is more accurate compared to other channels (i.e. $E_{\nu} = E_{\mu} + E_{\pi}$)

NOvA cross-section results will be useful for upcoming DUNE experiment

Coherent pion production can be mistaken for quasi-elastic scattering when the π^+ is misidentified as a proton or is not detected

For isoscalar nuclei coherent $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ cross sections are same

Chatura Kuruppu

Signal and Background Definitions

• Signal definition:

 v_{μ} CC coherent interactions formed within the fiducial volume

Current Topology

Charged Current Coherent event reconstructed as two 3D prongs

• Currently analyzing golden event sample

Charged Current Coherent event reconstructed as two 3D prongs and one 2D prong will not be considered

Note: Prong is a reconstructed particle candidate that has directional and reconstructed information

Event Selection

• Created following cuts to separate Signal and the Backgrounds:

- 1. Basic Cuts:
 - a) Data Quality Cut
 - b) Fiducial Cut (As shown in slide 6)
 - c) Two Prong Cut (To select clean events with only 2 reconstructed prongs)
 - d) Containment Cut: (As shown in slide 6)
- Muon ID Cut (BDT trained score made by using dE/dx log likelihood as input to separate

Muons from other particles)

- a) Track with the highest MuonID Score will select as Muon Candidate
- b) MuonID Cut value was optimized to separate Muons

Chatura Kuruppu

Event Selection (continued..)

- 3. PionID Cut:
 - a) BDT trained by using hit energy depositions of pion candidates.
 - b) Cut value mainly defined to remove
 protons present in pion candidates from CC
 QE and CC DIS backgrounds

NOvA Simulation

Event Selection (continued..)

- 3. Hit Score Cut:
 - a) BDT trained by using hit energy deposition to check the hadronic activity around the reconstructed vertex
 - b) Cut value mainly defined to remove CC RES dominating backgrounds

- 4. Kinematic Cut:
 - a) BDT trained by using kinematics such as missing transverse momentum, transverse momenta,

opening angle and visible angle

NOvA Simulation

Reconstructed |t| (Signal Vs Background)

NOvA Simulation

Chatura Kuruppu

- Among all the neutrino-nucleus interactions, CC Coherent interactions have lowest |t|
- After applying event selection, dominant background is CC RES

Cut Name	СС СОН	CC RES	Other	Total Bkgd.	Purity (%)	Rel. Eff. (%)
Basic Cuts	4778	80614	272003	352617	1.34	100
Muon ID	4290	65155	193066	258221	1.63	89.77
Pion ID	3211	18285	38820	57105	5.32	67.2
Hit Score	2844	6716	33478	40194	6.61	59.52
Kinematic	1890	812	492	1304	59.17	39.54

- Current purity: ~59% with total signal events: 1890
- MINERvA experiment: Purity: 54% with total signal events: 1628

- Finalizing event selection
- Defining kinematic phase space
- Studying full assessment of systematic uncertainties (Calibration..etc)
- Defining background control samples and look at data

Thank you!

Chatura Kuruppu

Questions?

Chatura Kuruppu

University of South Carolina

Fermilab New Perspectives 2022 15

Chatura Kuruppu

University of South Carolina

Fermilab New Perspectives 2022 16

NOvA Simulation

Reconstructing |t|

$$t| = \left| (p_{\nu} - p_{\mu} - p_{\pi})^2 \right|$$
$$\approx \left(\sum_{i=\mu,\pi} E_i - p_{i,L} \right)^2 + \left| \sum_{i=\mu,\pi} \vec{p}_{i,T} \right|^2$$

(Measurement of Total and Differential Cross Sections of Neutrino and Antineutrino Coherent pion Production on Carbon by MINERVA Collaboration [arXiv:1409.3835])

- Assumptions:
 - The recoiling nucleus only takes momentum and no energy (infinitely heavy nucleus)
 - The transverse momentum of the incoming neutrino is zero (w.r.t. beam coordinates system)

$$\therefore p_{\nu} = \begin{pmatrix} E_{\mu} + E_{\pi} \\ 0 \\ 0 \\ E_{\mu} + E_{\pi} \end{pmatrix}, p_{\mu} = \begin{pmatrix} E_{\mu} \\ p_{\mu_{\chi}} \\ p_{\mu_{y}} \\ p_{\mu_{z}} \end{pmatrix} \text{ and } p_{\pi} = \begin{pmatrix} E_{\pi} \\ p_{\pi_{\chi}} \\ p_{\pi_{y}} \\ p_{\pi_{z}} \end{pmatrix}$$

Here, P_t and P_l are transverse and longitudinal momenta calculated w.r.t. the beam direction

Here, P_x , P_y and P_z are momentum components of the neutrino observed w.r.t. the detector coordinate system

Here, $\hat{U} = (0.0011401229, -0.06190152, 0.99807253)$ *i.e* Average Beam Direction()