Data Acquisition and Reconstruction Efficiency with the SBND Photon Detection System (PDS)

Lynn Tung

New Perspectives 2022

June 17th, 2022

FERMILAB-SLIDES-22-048-V

- the Short-Baseline Near Detector (SBND) will record a record number of neutrino interactions from the Booster Neutrino Beam (BNB) in Fermilab
- Challenge: How to find, identify, and analyze neutrino events? How to separate these from background?

- the Short-Baseline Near Detector (SBND) will record a record number of neutrino interactions from the Booster Neutrino Beam (BNB) in Fermilab
- Challenge: How to find, identify, and analyze neutrino events? How to separate these from background?
 - beam spill length: 1.6 us
 - TPC readout: 3 ms

- the Short-Baseline Near Detector (SBND) will record a record number of neutrino interactions from the Booster Neutrino Beam (BNB) in Fermilab
- Challenge: How to find, identify, and analyze neutrino events? How to separate these from background?
 - beam spill length: 1.6 us
 - TPC readout: 3 ms

- the Short-Baseline Near Detector (SBND) will record a record number of neutrino interactions from the Booster Neutrino Beam (BNB) in Fermilab
- Challenge: How to find, identify, and analyze neutrino events? How to separate these from background?
 - beam spill length: 1.6 us
 - TPC readout: 3 ms
 - 1. Light Hardware Trigger: PDS, online

Photon Detection System (PDS)

- the Short-Baseline Near Detector (SBND) will record a record number of neutrino interactions from the Booster Neutrino Beam (BNB) in Fermilab
- Challenge: How to find, identify, and analyze neutrino events? How to separate these from background?
 - beam spill length: 1.6 us
 - TPC readout: 3 ms
 - 1. Light Hardware Trigger: PDS, online
 - 2. Pandora Event Reco: TPC, offline
 - 2. Flash Creation: PDS, offline

- the Short-Baseline Near Detector **(SBND)** will record a record number of neutrino interactions from the Booster Neutrino Beam (BNB) in Fermilab
- Challenge: How to find, identify, and analyze neutrino events? How to separate these from background?
 - beam spill length: 1.6 us
 - TPC readout: 3 ms
 - 1. Light Hardware Trigger: PDS, online
 - 2. Pandora Event Reco: TPC, offline
 - 2. Flash Creation: PDS, offline
 - 3. Flash Matching: PDS and TPC, offline

Introduction: Reconstruction & Efficiencies

- To maximize our physics potential, we must optimize both data acquisition (triggering) and reconstruction efficiency

• in an ideal world: 100% efficiency for neutrinos, 0% efficiency (or 100% rejection) for background

THE UNIVERSITY OF CHICAGO

Introduction: Reconstruction & Efficiencies

- To maximize our physics potential, we must optimize both data acquisition (triggering) and reconstruction efficiency
- Charged current ν (CC): outgoing lepton (e- or muon) \rightarrow easier to reconstruct
- Neutral current ν (NC): outgoing neutrino \rightarrow much harder to reconstruct

6/17/2022 Lynn Tung | New Perspectives 2022

3

• in an ideal world: 100% efficiency for neutrinos, 0% efficiency (or 100% rejection) for background

THE UNIVERSITY OF CHICAGO

Introduction: Reconstruction & Efficiencies

- To maximize our physics potential, we must optimize both data acquisition (triggering) and reconstruction efficiency
- Charged current ν (CC): outgoing lepton (e- or muon) \rightarrow easier to reconstruct
- Neutral current ν (NC): outgoing neutrino \rightarrow much harder to reconstruct
- **Cosmic Muons:** main background \rightarrow can look like ν_{μ} CC event!

6/17/2022 Lynn Tung | New Perspectives 2022

3

• in an ideal world: 100% efficiency for neutrinos, 0% efficiency (or 100% rejection) for background

energy range discussed in this presentation

NC plots available in backup slides

Triggering & Photon Detection System (PDS)

Extremely high statistics but SBND cannot record sub-system data for every beam spill! lacksquare

Triggering & Photon Detection System (PDS)

- Extremely high statistics but SBND cannot record sub-system data for every beam spill!
- Light is the fastest way to determine if a possible neutrino interaction occurred (order of ~ns)
 - Photo-multiplier tube (PMT) readout is 500 MHz, or 2 ns
 - TPC readout is on the order of ~ms (x10⁶ longer!) due to slow drift of ionization electrons
- PMT hardware trigger reduces volume of data recorded for multiple sub-systems

Triggering & Photon Detection System (PDS)

- Extremely high statistics but SBND cannot record sub-system data for every beam spill!
- Light is the fastest way to determine if a possible neutrino interaction occurred (order of ~ns)
 - Photo-multiplier tube (PMT) readout is 500 MHz, or 2 ns
 - TPC readout is on the order of \sim ms (x10⁶ longer!) due to slow drift of ionization electrons
- **PMT hardware trigger** reduces volume of data recorded for multiple sub-systems

6/17/2022 Lynn Tung | New Perspectives 2022

4

SBND PDS system:

- 120 8-inch Hamamatsu photo-multiplier tubes (PMTs) and 192 **ARAPUCAs**
- Reflective cathode plane increases light yield
- PDS records both visible and VUV light

• During beam spill: does a PMT measure light?

• During beam spill: does a PMT measure light?

- During beam spill: does a PMT measure light?
- How many pairs of PMTs had at least one PMT above light threshold?
 - **why pairs?** our PMT digitizers are capable of evaluating AND/OR signals for pairs, but not individual PMTs

- During beam spill: does a PMT measure light?
- How many pairs of PMTs had at least one PMT above light threshold?
 - why pairs? our PMT digitizers are capable of evaluating \bullet AND/OR signals for pairs, but not individual PMTs

- During beam spill: does a PMT measure light?
- How many pairs of PMTs had at least one PMT above light threshold?
 - why pairs? our PMT digitizers are capable of evaluating \bullet AND/OR signals for pairs, but not individual PMTs
- Trigger: pass events with >= 10 pairs

Lynn Tung | New Perspectives 2022

6/17/2022

SBND &

Fermilab

- During beam spill: does a PMT measure light?
- How many pairs of PMTs had at least one PMT above light threshold?
 - why pairs? our PMT digitizers are capable of evaluating • AND/OR signals for pairs, but not individual PMTs
- Trigger: pass events with >= 10 pairs

CC neutrino events: ~100%

cosmic muon efficiency: ~95-100%

Lynn Tung | New Perspectives 2022

6/17/2022

SBND S

Fermilab

• After data acquisition and triggering in the TPC there are a multitude of steps:

LArTPC Event Display

- After data acquisition and triggering in the TPC there are a multitude of steps:
 - signal processing, hit finding, track finding with pattern recognition, etc.

- After data acquisition and triggering in the TPC there are a multitude of steps:
 - signal processing, hit finding, track finding with pattern recognition, etc.
- Pandora is a multi-algorithm pattern recognition framework adapted to perform TPC reconstruction in many LArTPC experiments

- After data acquisition and triggering in the TPC there are a multitude of steps:
 - signal processing, hit finding, track finding with pattern recognition, etc.
- Pandora is a multi-algorithm pattern recognition framework adapted to perform TPC reconstruction in many LArTPC experiments
 - high-level characterization includes: particle identification, neutrino flavor and interaction type identification, and more

- After data acquisition and triggering in the TPC there are a multitude of steps:
 - signal processing, hit finding, track finding with pattern recognition, etc.
- Pandora is a multi-algorithm pattern recognition framework adapted to perform TPC reconstruction in many LArTPC experiments
 - high-level characterization includes: particle identification, neutrino flavor and interaction type identification, and more

Pandora: ν (Nu) Candidate

1. Unambiguous Cosmic Removal

2. Neutrino Candidate Scoring

7 6/17/2022 Lynn Tung | New Perspectives 2022

cosmic muons

Pandora: ν (Nu) Candidate

1. Unambiguous Cosmic Removal

- 2. Neutrino Candidate Scoring
- Un-contained (clear enter and exit) Muons

7 6/17/2022 Lynn Tung | New Perspectives 2022

cosmic muons

Pandora: ν (Nu) Candidate

1. Unambiguous Cosmic Removal

- 2. Neutrino Candidate Scoring
- Un-contained (clear enter and exit) Muons

7 6/17/2022 Lynn Tung | New Perspectives 2022

- - \bullet

Pandora: v (Nu) Candidate

- 1. Unambiguous Cosmic Removal
- 2. Neutrino Candidate Scoring

CC neutrino events: ~95-100% cosmic muon efficiency: ~80-95%

7 6/17/2022 Lynn Tung | New Perspectives 2022

Pandora: ν (Nu) Score

- 1. Unambiguous Cosmic Removal
- 2. Neutrino Candidate Scoring
- Multivariate analysis with boosted decision trees \bullet

Pandora: ν (Nu) Score

- Unambiguous Cosmic Removal
- 2. Neutrino Candidate Scoring
- Multivariate analysis with boosted decision trees \bullet
 - variables include: # of daughter particles, number of hits collected on wires, length and direction of tracks, etc.

Pandora: v (Nu) Score

- 1. Unambiguous Cosmic Removal
- 2. Neutrino Candidate Scoring
- Multivariate analysis with boosted decision trees \bullet
 - variables include: # of daughter particles, number of hits collected on wires, length and direction of tracks, etc.

Lynn Tung | New Perspectives 2022

6/17/2022

Pandora: ν (Nu) Score

- 1. Unambiguous Cosmic Removal
- 2. Neutrino Candidate Scoring
- apply cut at ν -score > 0.4

6/17/2022

8

Lynn Tung | New Perspectives 2022

Fermilab

Pandora: ν (Nu) Score

- 1. Unambiguous Cosmic Removal
- 2. Neutrino Candidate Scoring
- apply cut at ν -score > 0.4

CC neutrino events: ~90-95% cosmic muon efficiency: ~70%

Lynn Tung | New Perspectives 2022

6/17/2022

Fermilab

- After PMT data acquisition and triggering:
 - light waveforms ullet

- After PMT data acquisition and triggering:
 - light waveforms \rightarrow optical hits ullet
 - various hit times, # of photoelectrons, PMT spatial coordinates

- After PMT data acquisition and triggering:
 - light waveforms \rightarrow optical hits ullet
 - various hit times, # of photoelectrons, PMT spatial coordinates
 - combine time-coincident optical hits ${\color{black}\bullet}$

- After PMT data acquisition and triggering:
 - light waveforms \rightarrow optical hits \bullet
 - various hit times, # of photoelectrons, PMT spatial coordinates
 - combine time-coincident optical hits \rightarrow flash object
 - one flash time, total photoelectrons measured, one "flash center" coordinate

Fermilab

How many flashes are created? When do the flashes happen?

How many flashes are created? When do the flashes happen? lacksquare

- How many flashes are created? When do the flashes happen? lacksquare
- select events with in-time flashes

- How many flashes are created? When do the flashes happen? lacksquare
- select events with in-time flashes
- CC neutrino efficiency: ~85-90%

cosmic muon efficiency: ~40-50%

- TPC: reconstructing tracks of ionization electrons
 - electrons *drift* to wire planes at 0.16 cm/us

 \smile

-

- TPC: reconstructing tracks of ionization electrons
 - electrons *drift* to wire planes at 0.16 cm/us
 - **1.3** *ms* of readout for 1 drift volume → unknown time
 - wires separated by 3mm → high spatial resolution

 \sim

- TPC: reconstructing tracks of ionization electrons
 - electrons *drift* to wire planes at 0.16 cm/us
 - **1.3** *ms* of readout for 1 drift volume → unknown time
 - wires separated by 3mm → high spatial resolution
- PDS: reconstructing scintillation light signals

- TPC: reconstructing tracks of ionization electrons
 - electrons drift to wire planes at 0.16 cm/us
 - **1.3** *ms* of readout for 1 drift volume → unknown time
 - wires separated by 3mm → high spatial resolution
- PDS: reconstructing scintillation light signals
 - PMTs separated ~0.5 meter → poor spatial resolution
 - light travels in nanoseconds → high timing resolution

- TPC: reconstructing tracks of ionization electrons
 - electrons *drift* to wire planes at 0.16 cm/us
 - 1.3 ms of readout for 1 drift volume → unknown time
 - wires separated by 3mm → high spatial resolution
- PDS: reconstructing scintillation light signals
 - PMTs separated ~0.5 meter \rightarrow poor spatial resolution
 - light travels in nanoseconds → high timing resolution
- Flash Matching: Combine TPC info and PDS flashes for good timing and good spatial reconstruction!

- TPC: reconstructing tracks of ionization electrons
 - electrons *drift* to wire planes at 0.16 cm/us
 - **1.3** *ms* of readout for 1 drift volume → unknown time
 - wires separated by 3mm → high spatial resolution
- PDS: reconstructing scintillation light signals
 - PMTs separated ~0.5 meter \rightarrow poor spatial resolution
 - light travels in nanoseconds → high timing resolution
- Flash Matching: Combine TPC info and PDS flashes for good timing and good spatial reconstruction!
- Inputs to SBND Flash Matching score:
 - spatial centers of charge vs. spatial centers of light
 - e.g. Pandora reconstructed vertex vs. flash center
 - ratios of visible and VUV light
 - footprint of light

TPB Coated K-ARAPUCAs 5 mReflector Foil Combine charge and light!

Fermilab

12 6/17/2022

select events with flash score <= 7

12 6/17/2022

select events with flash score <= 7 CC neutrino efficiency: ~70-80% cosmic muon efficiency: < 20%

12 6/17/2022

- select events with flash score <= 7
- CC neutrino efficiency: ~70-80% cosmic muon efficiency: < 20%
- removes an additional 60% of cosmics!

Combining sub-system info is very powerful!

12 6/17/2022

- At the end of the standard reconstruction chain:
 - CC neutrinos: >~70% efficiency
 - low-energy events: ~60% efficiency
 - less than 20% of cosmic muons remain

- At the end of the standard reconstruction chain:
 - CC neutrinos: >~70% efficiency
 - low-energy events: ~60% efficiency
 - less than 20% of cosmic muons remain

Future Improvements

- At the end of the standard reconstruction chain:
 - CC neutrinos: >~70% efficiency
 - low-energy events: ~60% efficiency
 - less than 20% of cosmic muons remain
- Future Improvements
- Flash Creation + Matching stage has largest decreases in efficiency for neutrino events:
 - currently implementing improvements to flash

ncy **remain**

- At the end of the standard reconstruction chain:
 - CC neutrinos: >~70% efficiency
 - low-energy events: ~60% efficiency
 - less than 20% of cosmic muons remain
- Future Improvements
- Flash Creation + Matching stage has largest decreases in efficiency for neutrino events:
 - currently implementing improvements to flash creation and matching algorithms in SBND
- Improved reconstruction chain:
 - combining sub-system info with boosted decision trees for a single cosmic rejection score

ncy **remain**

