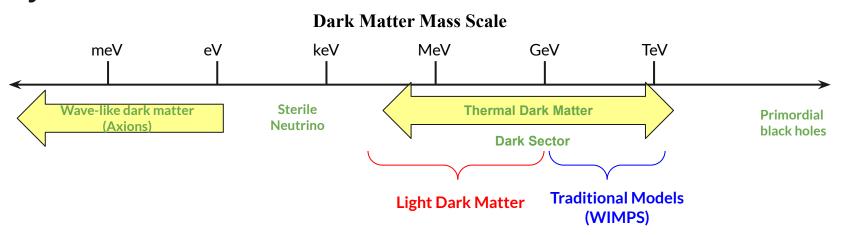


Search for Dark Sector Particles in the SpinQuest experiment

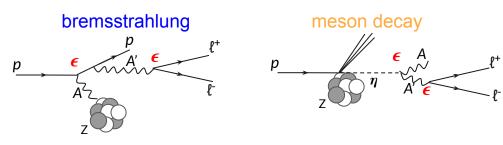
Zijie Wan (Boston University)
For the E1039/SpinQuest Collaboration and dark sector working group

New Perspectives 2022 June 16, 2022

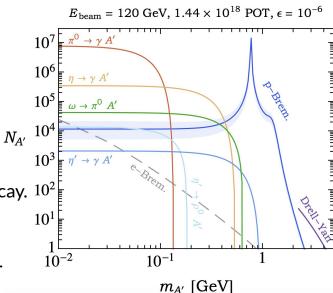
FERMILAB-SLIDES-22-058-V



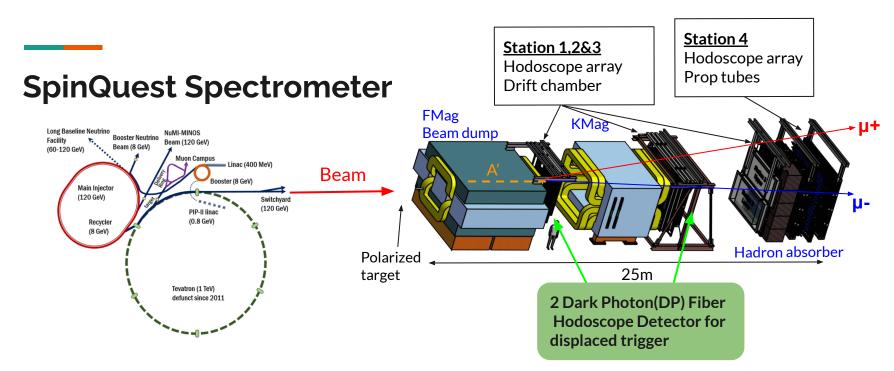
Overview


- Physics Motivation
 - Dark sector particles
 - Signal process: dark photon example
- SpinQuest Spectrometer
- New Fiber Hodoscope Trigger
 - General FPGA trigger system
 - New displaced trigger algorithm
 - Background reduction
- Future Upgrade: DarkQuest
- Summary

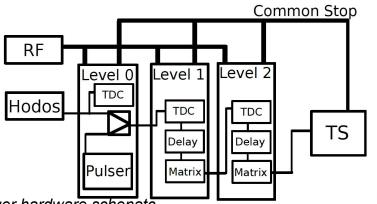
Physics Motivation



- Dark Sectors provide the DM candidates, and can also address many other open problems in particle physics.
- High-intensity accelerators and fixed-target experiments provide an ideal environment to probe dark sector physics in MeV-GeV range.


Signal Processes: Dark Photon Example

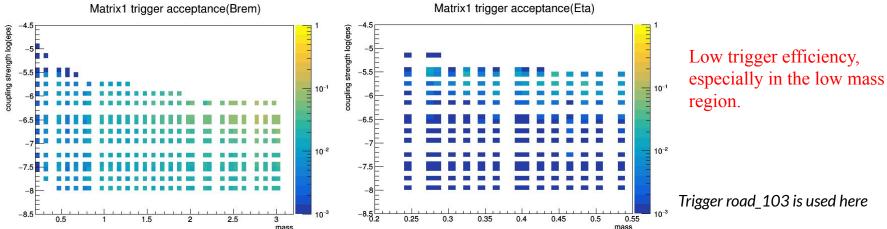
- Two domaint dark photon production mechanisms from proton 10^3 beam interacting with fixed-target:bremsstrahlung & meson decay. 10^2
- Dimuon decay products can be triggered and reconstructed by SpinQuest spectrometer.
- Displacement in z-vertex position provides unique signature for identifying the long lived dark photons.



Number of dark photons produced at phase 1 of seaquest experiment(<u>A.Berlin</u>)

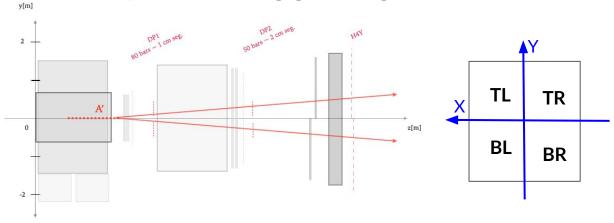
• 120 GeV high-intensity proton beam from the Fermilab Accelerator Complex. We expect integrated luminosity of ~10^18 POT in 2 year SpinQuest running.

Current FPGA Trigger System


Trigger hardware schenatc (R. E. McClellan)

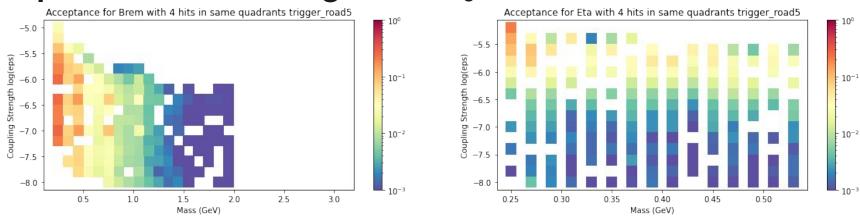
The five outputs of the Level 2 trigger module. "Matrix1" is the main production trigger. (arXiv:1706.09990v2)

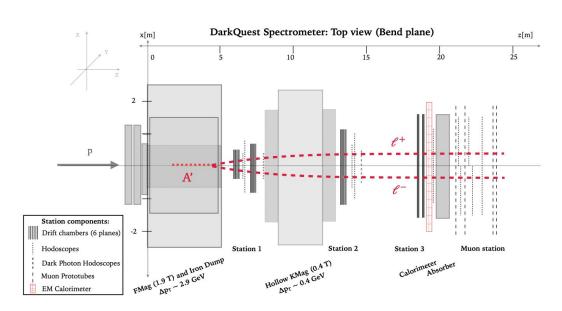
- Three Levels of CAEN V1495 VME modual FPGA Trigger
- Level 1 identify the single muon tracks by specific "trigger road" defined as 4 coincidence hodoscope hits from 4 station respectively
- Level 2 combine the information to trigger dimuon events.
- Trigger rate upper limit:~5kHz.


Name	Side	Charge	p_x Req.	Notes
Matrix 1	TB/BT	+-/-+	None	Main physics trigger
Matrix 2	TT/BB	+-/-+	None	Same-Side trigger
Matrix 3	TB/BT	++/	None	Like-Charge trigger
Matrix 4	T/B	+/-	None	All singles trigger
Matrix 5	T/B	+/-	$p_x > 3 \mathrm{GeV/c}$	$\text{High-}p_T$ singles trigger

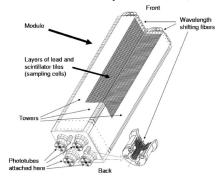
Current FPGA Trigger Efficiency on A' signals

- Reconstruct the simulated displaced A' -> dimuon events based on different masses, coupling constants, and mechanisms (Bremsstrahlung or eta decay).
- Calculate the trigger efficiency defined by:
 eff = events # pass the fpga trigger/total events between 5-6m

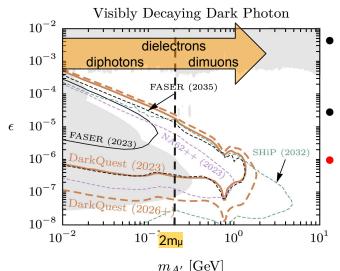

New dispalced trigger algorithm


- Adding two dark photon hodoscopes in order to improve the trigger efficiency on displaced signals.
- Trigger fires if hits are in the same quadrant for DP1, DP2, and H4Y detector.
- Z-vertex reconstruction can be made based on the hit positions on DP1 & DP2.

Specific road & background rejection



- Specific trigger road is defined by 4 coincidence fiber hodoscope hits in the same quadrant: (dp1_hit_elmID1, dp1_hit_elmID2, dp2_hit_elmID1, dp2_hit_elmID2)
- Rule out all of the road hitted by ~14k NIM3 triggered events in 2017 experimental data.
- Choose most frequent hitted road by signal files. (Road optimization is still ongoing)


Future Upgrade: DarkQuest experiment

- Make full use of the existing SpinQuest spectrometer
- Upgrade with one Electromagneic calorimeter (EMCal) sector(2m×4m, from PHENIX Experiment)

Future Upgrade: DarkQuest experiment

Projected sensitivity: Darl Photon as an example

Provide access to electron and proton final states. Broaden the coverage to lower masses

Provide more sensitivity by rejecting muon and hadron backgrounds.

With most already existing experimental component, the upgrade is very low cost.

Signature	Model	
e^+e^-	dark photon dark Higgs leptophilic scalar*	
$e^{+}e^{-}e^{+}e^{-}$	Higgsed dark photon	
$e^{\pm}\pi^{\mp}, e^{\pm}K^{\mp}, \cdots$	sterile neutrino	
$e^+e^- + MET$	inelastic dark matter strongly interacting dark matter hidden valleys	
$\pi^+\pi^-, K^+K^-, \cdots$	dark Higgs*	
$\gamma\gamma$	axion-like particle*	

Snowmass paper on this: https://arxiv.org/pdf/2203.08322.pdf

various experimental signatures and the relevant models that can be searched for at DarkQuest with the EMCal upgrade

Summary

- Searching for light dark matter and dark sector particles is an important part of the worldwide particle physics program.
- SpinQuest Spectrometer provides a good opportunity to search for such long lived dark sector particles.
- New displaced trigger algorithm is developed, improving the trigger efficiency for dark photons signal a lot.
- A new proposed DarkQuest Experiment can perform new world-leading searches in next few years with low cost.

Collaboration

- A strong team assembled of both experimentalists and theorists.
- Integration with the Snowmass project; have one Snowmass paper on this:

https://arxiv.org/pdf/ 2203.08322.pdf

DarkQuest: A dark sector upgrade to SpinQuest at the 120 GeV Fermilab Main Injector

Aram Apyan¹, Brian Batell², Asher Berlin³, Nikita Blinov⁴, Caspian Chaharom⁵, Sergio Cuadra⁶, Zevnep Demiragli⁵, Adam Duran⁷, Yongbin Feng³, I.P. Fernando⁸, Stefania Gori⁹, Philip Harris⁶, Duc Hoang⁶, Dustin Keller⁸, Elizabeth Kowalczyk¹⁰ Monica Leys², Kun Liu¹¹, Ming Liu¹¹, Wolfgang Lorenzon¹², Petar Maksimovic¹³, Cristina Mantilla Suarez³, Hrachya Marukyan¹⁴, Amitav Mitra¹³, Yoshiyuki Miyachi¹⁵, Patrick McCormack⁶, Eric A. Moreno⁶, Yasser Corrales Morales¹¹, Noah Paladino⁶, Mudit Rai², Sebastian Rotella⁶, Luke Saunders⁵, Shinaya Sawada²¹, Carli Smith¹⁷, David Sperka⁵, Rick Tesarek³, Nhan Tran³, Yu-Dai Tsai¹⁸, Zijie Wan⁵, and Margaret Wynne¹²

¹Brandeis University, Waltham, MA 02453, USA

²University of Pittsburgh, Pittsburgh, PA 15260, USA

³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

⁴University of Victoria, Victoria, BC V8P 5C2, Canada

5Boston University, Boston, MA 02215, USA

⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA

7San Francisco State University, San Francisco, CA 94132, USA

⁸University of Virginia, Charlottesville, VA 22904, USA

University of California Santa Cruz, Santa Cruz, CA 95064, USA

¹⁰Michigan State University, East Lansing, Michigan 48824, USA

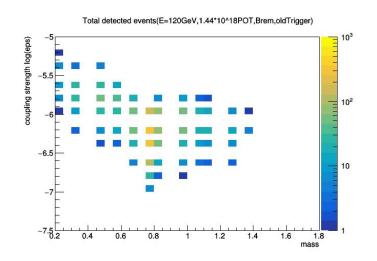
¹¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA

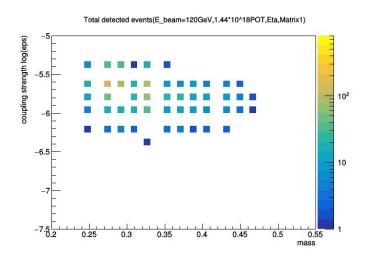
¹²University of Michigan, Ann Arbor, MI 48109, USA

¹³Johns Hopkins University, Baltimore, MD 21218, USA ¹⁴Yamagata University, Yamagata, 990-8560, Japan

15KEK Tsukuba, Tsukuba, Ibaraki 305-0801 Japan

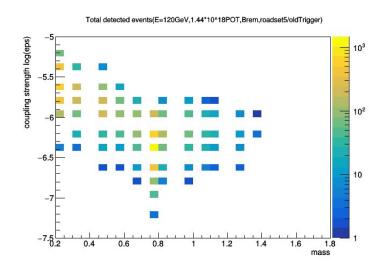
¹⁶Yerevan Physics Institute, Yerevan, 0036, Republic of Armenia

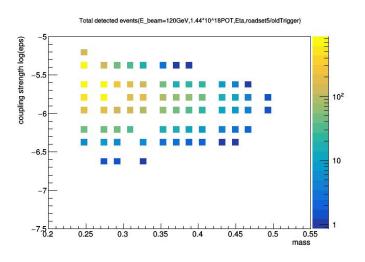

¹⁷Penn State University, State College, PA 16801, USA

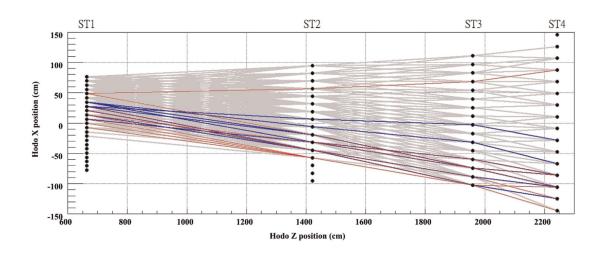

¹⁸University of California Irvine, Irvine, CA 92697, USA

Backup

Knowing the trigger efficiency, we can calculate the total number of Aprime Events that can be detected.


 $N = cross\ section(eps^2)\ *\ L(POT)\ *\ decay_prob(5-6m)\ *\ acc(trigger)$




Backup

Knowing the trigger efficiency, we can calculate the total number of Aprime Events that can be detected. $N = cross\ section(eps^2)\ *\ L(POT)\ *\ decay_prob(5-6m)\ *\ acc(trigger)$

Backup

visualization of the hit patterns of μ+ on X-hodoscope (current trigger road). black points represent scintillator paddles viewed from the top. red and blue line shows the most-frequent hit patterns (doi:10.1016/j.nima.2015.09.001)