
Automated Lens Parameter Estimation using Simulation-Based Inference Methods

Jason Poh (he/him) (University of Chicago)
With A. Samudre, A. Ciprijanovic, B. Nord, J. Frieman, D. Tanoglidis, G. Khullar 

Deep Skies Lab
June 22 2022

New Perspectives 2022

1

FERMILAB-SLIDES-22-078-SCD



(Image: NASA)
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Why study 
gravitational lenses? 
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Strong Lenses for Dark Matter
Credit: KIPAC

Image: NASA/ESA
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Future Predicted Lens Populations 

Today 1,000

DES 2,400

LSST 120,000

(Moustakas, 2012, Nord+ 2016, Collett 2015, Oguri & Marshall 2010)

~700 lens candidates from DES so far. 
(Diehl et al, 2017, Jacobs 2018, Diehl et al, 2022)  
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Accurate and precise modeling of lens systems are 
needed for inferring its underlying astrophysics

7



Modeling a simple galaxy-galaxy lens system
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~6 parameters

~6 parameters



Challenges for conventional lens modeling methods
● Does not easily scale.
● More complex models can have up to hundreds of parameters.
● Computationally expensive, perhaps prohibitively so. 

This necessitates the development of automated inference methods.
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Simulation-Based Inference (SBI)
● Family of methods that use simulators to circumvent the need to 

calculate explicit likelihoods for bayesian inference.  
● We train a neural network to predict the posterior probability of the 

lens model parameters we want to infer from some given data.

Neural Network
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Posterior distribution 
of model parameters



Advantages of SBI over conventional methods.
● Computation is amortized (i.e. after the upfront cost of training the 

density estimator, inference is cheap).  
● Scales to large datasets (unlike ABC and MCMC where individual 

inference chains are needed for each observation).
● Posterior probability as model output allow for interpretable 

uncertainty estimates. 
● Robust validation methods such as simulation-based calibrations (SBC).
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This Work
● We use Masked Autoregressive Flows (MAF) (Papamakarios+2017) as the 

neural posterior estimator (NPE) as our SBI algorithm of choice.
○ Mackelab sbi python library (Alvaro Tehero-Cantero+2020) 

● We compare our results with a bayesian neural network (BNN) trained 
on the same training dataset.

● BNNs are extensions of standard neural networks where weights and 
output are treated as probability distributions.
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https://www.mackelab.org/sbi/


Tangent: Bayesian neural networks (BNN)

Credit: cyda
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Dataset and Models
● Training Set: 200k Dark Energy Survey-like single band images with lens 

light subtracted.
○ deeplenstronomy (Morgan+2021) and lenstronomy (Birrer+2015,2018,2021) libraries

● Data: 1000 images not from the training set, to be modeled.
● Models: 

○ 5 parameter singular isothermal ellipsoid (SIE) for the lens mass
○ 12 parameter - SIE mass model (5) + sersic source light model (5) + external shear (2) (in 

progress)
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https://github.com/deepskies/deeplenstronomy
https://lenstronomy.readthedocs.io/en/latest/#


Simulated Images
20 randomly-selected images in the simulated “observed” data
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Lensing arc



Results - 5-parameter single lens system
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Results - 5-parameter model, 1000 images
The quantities in this corner plot are:

Inferred best-fit value from posteriors - ‘true’ value from sim

What we want:
● Precise: contours are appropriately small in size
● Accurate: contours are centered around origin

Both methods are accurate, but NPE method is more precise than 
BNN. (we’re trying to understand why)
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Conclusion and Work in Progress
● Expand simulation complexity (full 12 parameter mass+light model).  

○ Other lens models?
● Continue to optimize performance of our SBI methods.

○ Increase training set size (200k to 1mil)
○ Optimize hyperparameters of neural density estimator.
○ More diagnostics like simulation-based calibration (SBC), coverage probability plots, etc, 

to increase confidence in the results.  

Thanks! 

jasonpoh@uchicago
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Backup slides
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BNN and SBI Architectures
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Uncertainties
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Strong Lenses for Dark Energy - Time Delay Lenses

(or supernova)

(Shajib et al. 2018)

Time delay

Time-delay distance

Geometric 
time-delay

Lens 
potential
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Uncertainties
Aleatoric: Error in the data 

● Modeled by allowing 
output to be a distribution

Epistemic: Error in the model

● Modeled by allowing 
weights be a distribution.
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Simulation-based Calibrations
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kolmogorov-smirnov p-values 
check_stats['ks_pvals'] = 
[2.2129539e-01 1.2099531e-13 
2.3344547e-02 2.8580514e-01 
3.7295149e-06]
c2st accuracies 
check_stats['c2st_ranks'] = [0.572  
0.5825 0.5975 0.585  0.589 ]
- c2st accuracies 
check_stats['c2st_dap'] = [0.4945 
0.522  0.5205 0.465  0.499 ]


