
COMBINE: COmputational Modeling of BIg NEtworks
Contribution ID: 12 Type: not specified

Computationally Modeling High-Speed Scientific
Networks

Tuesday, 11 September 2012 14:22 (12 minutes)

Computationally Modeling High-Speed Scientific Networks
Jun Yi, Venkatram Vishwanath, and Rajkumar Kettimuthu
Mathematics and Computer Science Division, Argonne National Lab
{jyi, venkatv, kettimut}@mcs.anl.gov

1, The Need of Computational Modeling for Scientific Networks Scientific experiments (e.g., climate modeling
and prediction, biomedical imaging, geosciences, and high-energy physics) are expected to generate, analyze,
and distribute data volumes on the order of petabytes. These experiments are critically dependent upon ad-
vanced high-speed networks to move their enormous data between local and remote computing and storage
facilities. These experiments usually have a wide range of networking requirements and characteristics, e.g.,
bulk data transfer (high bandwidth, loss-less), climate visualization (large bandwidth, less jitter), and real-time
data analysis and decision making (high bandwidth, low latency, and loss-less). Moreover, these scientific data
flows usually traverse multiple different networks (shared WAN, dedicated circuit-based WAN, and LAN) and
are transferred using different protocols for better performance (For example, GridFTP or parallel TCP over
high-bandwidth
large-delay networks, UDT over high-latency networks). The heterogeneity of networks, flows, and protocols
and the ever-increasing traffic volume challenge the scientific network planning, operation (e.g., troubleshoot-
ing and configuration), and design to satisfying the heterogeneous requirements of scientific experiments.

Here we present two use cases that will benefit from the computauional modelling of end-to-end large scale
networks. DOE’s Advanced Photon Source (APS) user facility at Argonne National Laboratory provides the
Western Hemisphere’s most brilliant X-ray beams for research. It is projected to generate 100+ terabyte per
day within the next year. As data volumes increase, experiments may have to use external supercomputing
facilities to process the data in real-time, which will necessitate additional fast WAN transfers. The Office of
Science at DOE projects to support such high speed transfers as APS and comes across a challenging question
naturally: how to evolve from current high-speed network. Adding hardware capacity and improving soft-
ware efficiency are two solutions. However, where to add these hardware capacity and how/where to improve
software efficiency cost-effectively need scientific, not intuitive or hypothetical, answers. A computational
model of scientific networks can answer the question precisely: we can experiment on various network con-
figurations with the data communications requirements that the Office of Science at DOE collects yearly from
scientists, and choose the one that satisfies their requirements with the lowest cost or lowest evolution effort.

Globus Online and Globus GridFTP provide high-throughput, reliable, and secure big data movement service,
but the throughput in most cases, is still far from the physical network capacity. To further improve the
throughput of a GridFTP transfer, an end-to-end approach can help to identify the bottleneck and optimally
choose routing and transportation protocols and parameters along the path, which, however, can not be fully
effective until we have deeper understanding of interactions among various data flows and between the flows
and network. With a computational model, the network configuration based on current status can be modeled
and experimented to locate performance bottlenecks and choose the optimal configurations from the vast
configuration space in real-time.

2, The Challenges of Computational Modeling for Scientific Networks
However, it is challenging to computationally model scientific networks, even with the massive computing,
networking, and storage capacities provided by today’s supercomputers, grids, and clouds. These challenges
originate from the demands of computational models:
[1] Scalability. The model should be able to represent networks of various scales. The execution of the model
should fully harness the resources of future exascale computing facilities.
[2] Accuracy. The model should be as accurate to the real world as possible. It should accurately predict
performance results (e.g., throughput, latency, transfer completion time, resource usage) under various traffic
uncertainties with appropriate levels of computation loads within a certain time limit.
[3] Composibility/Extensibility. Models of two interconnecting regional
networks should be able to easily compose to form a larger network without knowing the internal details of
each model.

Among all of these challenges, the scalability challenge is the most critical one from our perspective. If a
network model can not take full advantage of the underlying massive parallel computing capacities, it can not



produce accurate results within a certain limited time, not even to mention experiments on a larger composed
networks.

Existing network modeling techniques will not be effective considering the sheer scale and complexity of
scientific networks. The discrete packet-level event simulation method usually uses a central discrete event
scheduler to schedule the time-stamped events such as packet and timer expiration. This centralized scheduler
becomes both the communication and computation bottleneck at scale. For example, 1M events per network
processing entity (e.g., network reception interrupt handler) per second and 1M vertical or horizontal network
processing entity for a network of medium scale will generate 1T events to be delivered, processed, synchro-
nized, and persisted in a second. Assuming 256 bytes for each event packet, 256T bytes per second traffic
will be generated, which will overwhelm current and forthcoming aggregated network capacities of super-
computers and grids (several terabytes per second). Moreover, event handlers must be executed in ascending
timestamp order to preserve the semantics of the physical network. Further, an executing event handler may
generate new events, which should be queued temporally as well. This method is not scalable computationally
due to the implicit fact that events are processed serially.

The pivot issue that prevents network models from harnessing the massive computing/communication capac-
ity lies mainly in the process/event synchronization method. On the one hand, massive amount of data and
control information flows among network elements and any patterns of dependency may exist and change
dynamically (e.g., a single event may have a ripple effect over the entire network). The complicated inter-
dependency naturally requires a serial execution of events, which exacerbates the modeling performance
when combined with large scale network models. For example, the tardiness of a single element may ex-
tremely waste computing resource as a whole (e.g., many entities wait for the completion of a tardy entity at
a certain lock step) and slow down the entire model. On the other hand, the capacity of today’s supercomput-
ers, grids, and clouds can only be fully harnessed by programs exhibiting massive parallelisms. The execution
of a serial program makes no much difference on a desktop computer or supercomputer.

Existing event/process synchronization methods in the distributed system literature is not efficient at scale.
Most existing synchronizationmethods only deals with logical (not timeliness) dependency. Just until recently,
parallel discrete event/process simulation was merely an academic research topic. There are basically two
methods to impose the correct temporal order of distributed event execution: conservative and optimistic
methods. By a conservative method, only a safe event can be executed (if a process contains an event E1 with
timestamp T1 and the process can determine that is impossible to receive an event with a smaller timestamp,
then the process consider that executing event E1 is safe without violating temporal constraints). Unsafe
events must be blocked. Consequently, most events processings are blocked in most time. By an optimistic
method, the temporal relationship between events can be broken but a detection and recovery mechanism
is added: whenever the incorrect temporal order of events is detected a rollback mechanism is invoked to
recover. However, deadline deadlocks are frequently formed and hard to detect in a complicated and large
network and therefore large computation is spent on expensive deadlock detection and recovery. Moreover,
the running pace of events in the model rarely match those of the physical network and the violation of
temporal relationships exists everywhere (due to pervasive and complicated dependency among network
elements) and thus most computation is spent on computation rollbacks.

3, Our Basic Idea and Its Challenges
We propose a hierarchical method for modeling scientific networks. The basic idea is to organize temporal rela-
tionships, event delivery, and work flow execution hierarchically to reduce communication overhead, increase
the parallelism of event processing, and dynamically balance event processing workload in a synchronization-
aware manner. The entire model is organized as a tree with (either vertical or horizontal) network elements
as leaves. Each interior node comprises a temporal synchronizer (TS), a workload distributor (WS), and an
event forwarder (EF). For example, multiple network processing elements (e.g., routing, queue, and transport
elements) of a networked computer can serve as leaves under the same parent. Multiple TSs, WSs, and EFs
corresponding to multiple interconnecting physical network elements can serve as children of a common
interior node corresponding to an autonomous system.

The hierarchy allows disjoint subtrees to run in parallel provided that the difference of their simulation times
is no greater than the communication latency between them. A TS is responsible for synchronizing the event
processing within its subtree. It uses the existing tree-barrier method to solve the communication bottleneck
problem, e.g., it reduces temporal communication load and latency since a few messages cross the hierar-
chy can progress the entire model to next time step. Moreover, it avoids time-consuming and complicated
event synchronization deadlock detection and recovery by the conservative and the optimistic synchroniza-
tion methods.

An EF is responsible for forwarding data and control events between interconnect (either vertical or horizon-
tal) network elements, which further reduces communication workload since absolutely majority of control
and data flows within the same subtree. Moreover, since EFs forward all timestamped events, they are able
to accurately estimate the needed resource by any subtree in any specific time range, which facilitates dis-
tributing workload to the underlying distributed and parallel execution environment. AWS is responsible for



distributing event processing workload within its subtree (e.g., to accelerate event processing if it lags behind
other subtrees). We do not use optimistic event synchronization methods to seek opportunistic event inde-
pendence at the cost of expensive computation rollbacks, which we believe can only accelerate turnaround
time of a model of scientific networks to a limited extent. Alternatively, we resort to synchronization-aware,
hierarchical, and dynamic load balance approach, where sluggish subtrees will be timely allocated sufficient
resource to keep pace with the remainder of the model.

However, we still face many challenges to pursue this approach. We list a few of them:
[1] Configurations. How to decide the size, height, and descendents of subtrees is important to the efficiency
of this approach. We intend to adaptively configure the tree and subtrees according to the network element
interaction pattern of the physical network and the capacity and workload of the underlying parallel and
distributed execution environment.
[2] Workload distribution. Distributing the event processing within a subtree appropriately into concrete
execution entities (e.g., threads within the same process, threads/processes distributed across multiple cores or
heterogeneous machines, etc.) greatly affects the running time of the model due to changing communication
latency and workload distributions in each simulation time-step. A dynamic workload- and synchronization-
aware scheduling framework is needed.
[3] Fault tolerance. TSs, EFs, and WSs will be single points of failure and redundancy mechanisms are needed
to recover from failures. We intended to use existing replication technique to increase the robustness of this
approach.
[4] Group communication. TSs need to broadcast timestamps within theirs respective subtrees. Effective
group communication mechanisms will extremely improve the efficiency of this approach and therefore is
worth investigating.

Primary authors: Dr KETTIMUTHU, Rajkumar (Mathematics and Computer Science Division, Argonne
National Lab); Dr VISHWANATH, Venkatram (Mathematics and Computer Science Division, Argonne National
Lab)

Presenters: Dr KETTIMUTHU, Rajkumar (Mathematics and Computer Science Division, Argonne National
Lab); DrVISHWANATH,Venkatram (Mathematics andComputer ScienceDivision, ArgonneNational Lab)


