

Modeling Expected and Anomalous Performance of End-to-end Application Workflows

Prasad Calyam, Ph.D.

pcalyam@osc.edu

DOE COMBINE Workshop September 2012

Topics of Discussion

- Application Workflow "Agendas"
- Expectation Management in Agendas
- Characterization and Modeling of Agendas
- Lessons from Prior Work
- Some Larger Questions...

Application Workflow "Agendas"

- Distributed computing applications in DOE community have "inherent workflow agendas"
 - Application: Bulk file transfers from research instrumentation sites in the LHC data transfers from Tier-0 to Tier-1 and Tier-2 sites
 - E.g., Agenda: Data sharing amongst worldwide collaborators for replicating results, and refining conclusions in LHC Tier-2 site collaborations
 - Application: Multi-user remote instrumentation steering and visualization in Remote access of PNNL Confocal microscopes in GTL project
 - E.g., Agenda: Remote analytics for real-time experimentation in the ITER inter-pulse data analysis using simulation codes at remote supercomputers

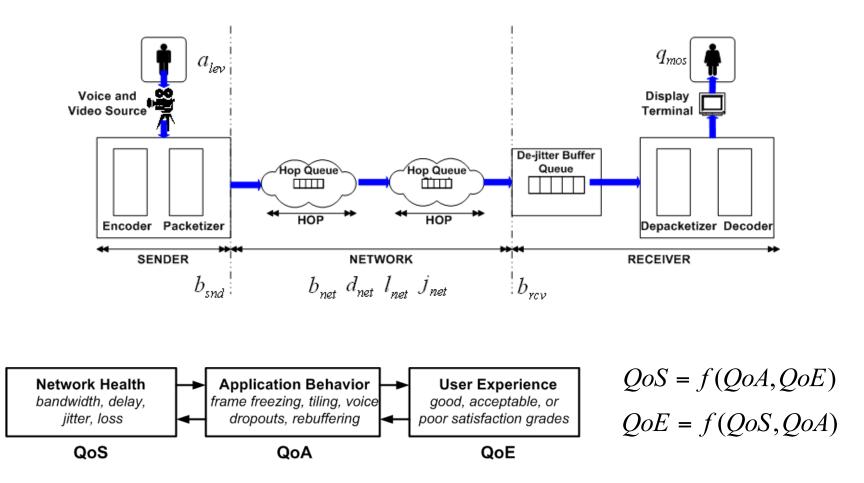
User QoE needs to be assessed over "Agendas" versus just at a session flow level; weakest component affects overall user productivity

Expectation Management in DOE Agendas What could be the expectations...

- Substantial infrastructure investments are being made, hence there are high application performance expectations from users
- Examples of user expectations could include:
 - (a) moving a Terabyte of LHC data within 6 hours between international collaborator sites
 - (b) smooth remote steering of the PNNL Confocal microscope that generates 12.5 Gbps high-definition video stream per camera to deliver "at-the-instrument" user experience for multiple geographically dispersed remote users
 - (c) a west-coast user experiencing reliable performance over long timeperiods when manipulating simulation codes and their graphical user interfaces pertaining to 2 to 3 Gbytes ITER inter-pulse data being transferred and analyzed every 20 minutes at NERSC supercomputer

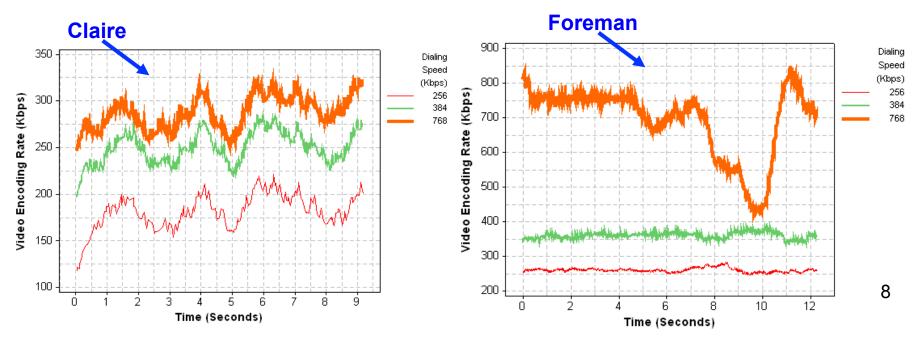
(d)

Characterization and Modeling of Agendas What we could be doing...

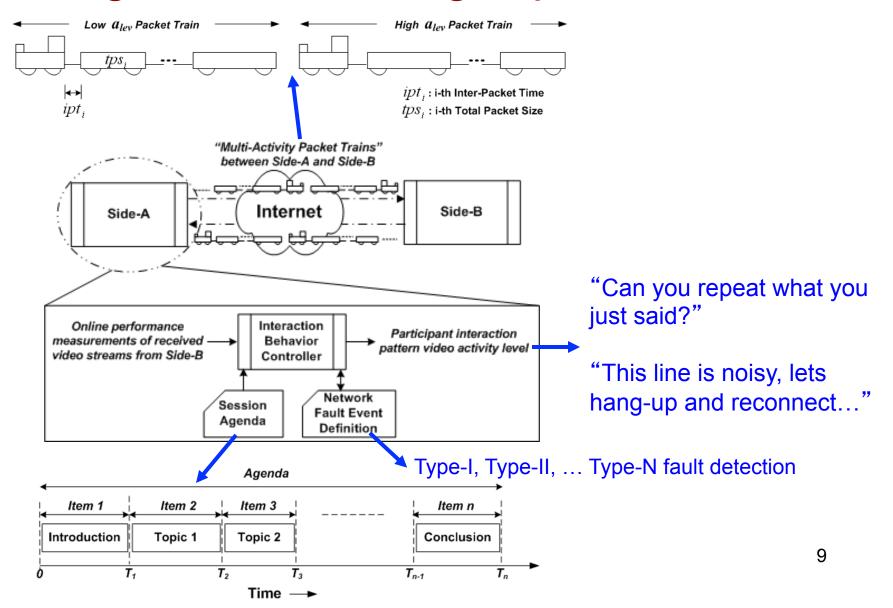

- Salient workflow agenda flows need to be characterized and modeled on *realistic testbeds*
 - User, application and network interplays could be understood
 - Dominant factors that affect performance could be identified to reduce sample space of data
 - 'Ideal' and 'Performance bottleneck' states could be catalogued in conjunction with user surveys
 - Correlation analysis can be performed on observed phenomena to compare with expectations

Characterization and Modeling of Agendas (2) What we could be doing...

- "Expectation-management" tools that allow repeatability need to be built, deployed and refined
 - They can be used to exercise, analyze and visualize if inherent workflow agendas are performing as expected or are anomalous (particularly if they are faulty)
 - They can be integrated to extend familiar and widely-adopted middleware software interfaces (e.g., Pegasus Workflow Management System, perfSONAR, ...)
 - Gather real-world data, re-train models to refine tools and make them more relevant, and keep them relevant!

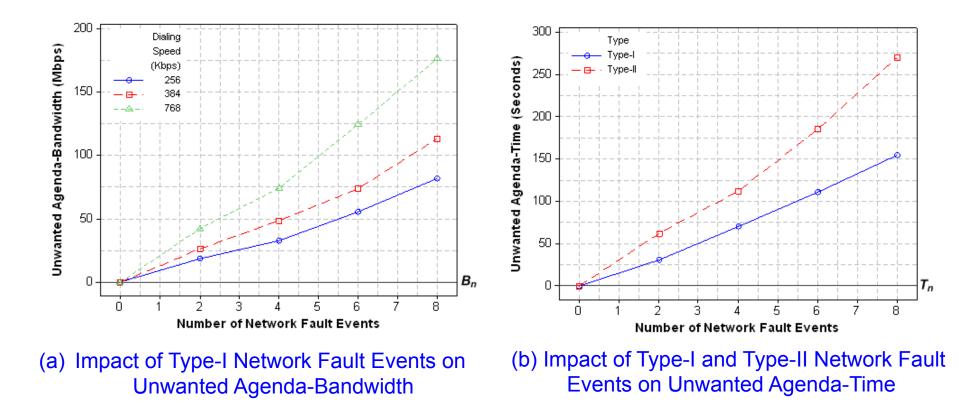

Lessons from Prior Work

Case study with Videoconferencing Workflow Agendas...



Video a_{lev}

- Low a_{lev} Slow body movements and constant background; E.g. *Claire* video sequence
- High a_{lev} Rapid body movements and/or quick scene changes; E.g. Foreman video sequence
- 'Listening' versus 'Talking'
 - Talking video a_{lev} (i.e., High) consumes more bandwidth than Listening video a_{lev} (i.e., Low)


Agenda Exercising "Vperf" Tool

Vperf Tool Implementation

Vperf Measurements Evaluation

More than one major product vendor and service provider have found use for the Vperf tool...

Some Larger Questions...

What challenges we face with salient workflow agendas...

- How to account for human behaviors when interacting with remote instruments or other humans and set "expectations"?
- How to characterize and model combination of both bandwidthintensive and latency-sensitive traffic flows under ideal and fault conditions? How to *find users* and *conduct* related user surveys?
- How to account for diverse and ever changing end-system, network technologies and build general models?
- What metrics and performance bounds can be used in agendaexercising tools to collect parameters for large-scale simulations?
- How to instrument real-world user applications with such tools to derive tangential benefits to users/operators in the short-term, *but also help continuously re-train models*?

Thank you for your attention!

Questions?

Voice and Video Packet Streams

$$b_{snd} = b_{voice} + b_{video} = tps_{voice} \left(\frac{b_{codec}}{ps}\right)_{voice} + tps_{video} \left(\frac{b_{codec}}{ps}\right)_{video}$$

- Total packet size (*tps*) sum of payload (*ps*), IP/UDP/ RTP header (40 bytes), and Ethernet header (14 bytes)
- Dialing speed is $\lceil b_{video} \rceil$; $\lceil b_{voice} \rceil = 64$ Kbps fixed for G.711 voice codec
 - Voice has fixed packet sizes ($tps_{voice} \le 534$ bytes)
 - Video packet sizes are dependent on a_{lev} in the content