UC Davis in CMS at the LHC

John Conway Tier-3 Networking Meeting 15 March 2007

The LHC

Will be world's highest energy proton collider: 7 TeV on 7 TeV

Construction nearing completion by end of 2007

Physics in 2008!

LHC in Numbers

beam energy	7 TeV
magnetic field	8.4 T
circumference	27 km
bunch collision rate	40 MHz
dipole magnets (14 m)	1232
luminosity	10 ³⁴ cm ⁻² s ⁻¹
total stored beam energy	300 MJ

CMS Trigger

The Physics

Is this the theory of the world?

$$\mathcal{L}_{GWS} = \sum_{f} (\bar{\Psi}_{f} (i\gamma^{\mu} \partial \mu - m_{f}) \Psi_{f} - eQ_{f} \bar{\Psi}_{f} \gamma^{\mu} \Psi_{f} A_{\mu}) +$$

$$+\frac{g}{\sqrt{2}}\sum_{i}(\bar{a}_{L}^{i}\gamma^{\mu}b_{L}^{i}W_{\mu}^{+}+\bar{b}_{L}^{i}\gamma^{\mu}a_{L}^{i}W_{\mu}^{-})+\frac{g}{2c_{w}}\sum_{f}\bar{\Psi}_{f}\gamma^{\mu}(I_{f}^{3}-2s_{w}^{2}Q_{f}-I_{f}^{3}\gamma_{5})\Psi_{f}Z_{\mu}+$$
$$-\frac{1}{4}|\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}-ie(W_{\mu}^{-}W_{\nu}^{+}-W_{\mu}^{+}W_{\nu}^{-})|^{2}-\frac{1}{2}|\partial_{\mu}W_{\nu}^{+}-\partial_{\nu}W_{\mu}^{+}+$$

$$-ie(W_{\mu}^{+}A_{\nu} - W_{\nu}^{+}A_{\mu}) + ig'c_{w}(W_{\mu}^{+}Z_{\nu} - W_{\nu}^{+}Z_{\mu}|^{2} + \frac{1}{4}|\partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu} + ig'c_{w}(W_{\mu}^{-}W_{\nu}^{+} - W_{\mu}^{+}W_{\nu}^{-})|^{2} + \text{Higgs}$$

$$\underbrace{\frac{1}{2}M_{\eta}^{2}\eta^{2}}_{\text{mass}} - \frac{gM_{\eta}^{2}}{8M_{W}}\eta^{3} - \frac{g'^{2}M_{\eta}^{2}}{32M_{W}}\eta^{4} + |M_{W}W_{\mu}^{+} + \frac{g}{2}\eta W_{\mu}^{+}|^{2} + \frac{g}{2}\eta W_{\mu}^{+}|^$$

$$+\frac{1}{2}|\partial_{\mu}\eta + iM_{Z}Z_{\mu} + \frac{ig}{2c_{w}}\eta Z_{\mu}|^{2} - \sum_{f} \frac{g}{2} \frac{m_{f}}{M_{W}} \bar{\Psi}_{f}\Psi_{f}\eta \overset{\mathsf{Hff}}{\underset{\mathsf{coupling}}{\mathsf{coupling}}}$$

The Higgs Boson

- may be the way particles get their mass
- "couples" to particles in proportion to their mass
- may be among the first things discovered at the LHC
- may be simple "Standard Model" Higgs or may be complex (as in supersymmetry)

The Higgs Boson

- at the LHC, after about one year of running, this may be our first glimpse of the Higgs boson
- classic "needle in haystack" problem
- next way: tau lepton pair decays

Higgs boson decaying to two high energy gamma rays in CMS

UC Davis in CMS

- founding member of US CMS in 1992
- faculty: Ko, Lander, Pellett, Tripathi, Chertok, Conway, Erbacher
- scientists: Breedon, Cox
- engineer: Case
- postdocs: Veelken, Vasquez, Soha, Lister
- students: Friis, Maruyama, Searle, Kopecky, ...
- computing: Squires

Davis Tier 3 Cluster

- presently have I4-node (dual CPU) cluster
- have ordered hardware to begin larger scale
 Tier 3 cluster in Data Center at Davis
- eventually ~100 dual quad-core Opteron
- ~100 Tb storage (we hope)
- will be part of OSG serving the CMSVO
- can devote local resources to Davis-specific physics projects when required
- will publish a few datasets

Networking Needs

- from cluster in Data Center to world, rate into cluster will exceed rate out
- could make use of lower priority/off peak times for very large dataset transfers
- need large on-demand rates for OSG jobs
- Mani: "As fast as possible" Is this right?

The networking capabilities available to us will influence how we do our physics analyses, rather than the other way around! (We'll use it all...)

next...

- Mike Squires (BA, CS/Physics)
 - will describe cluster plans in detail
 - security, grid, batch, CMSSW, etc.
- Sho Maruyama
 - will show example physics analysis
 - will describe measurements of network performance

Dawn of a New Era!

Thank you for your efforts in bringing us "up to speed"!