Cryo DC-DC boost converter development

Alessandro Andreani^{1,2}, Mauro Citterio¹, Paolo Cova^{1,3}, Nicola Delmonte^{1,3}, <u>Niccolo' Gallice^{1,2}</u>, Massimo Lazzaroni^{1,2}, Mirko Martignoni³, Paola Sala¹, Danilo Santoro^{1,3}, Andrea Zani¹

¹INFN Sezione di Milano ²Università degli Studi di Milano ³Università degli Studi di Parma

FD2-VD Photon Detector Cold Electronics Workshop at BNL 13/04/2022

Content

- System overview
- GaAs Power optical Converter (PoC)
- DC-DC boost design
 - Component characterization
 - Performance
- Control
 - Design
 - Component qualification
- Conclusions

System overview

- The system evolved with the needs / possibilities in the DUNE collaboration
- Produce the HV for SiPM bias at cold by the means of a DC-DC boost converter
- A power supply provided by a PoC (Power optical Converter) with a 5V - 7V range will give voltage/current for the DC-DC converter
- A typical boost configuration with a MOS transistor, to increase the output voltage up to 50V
- A PWM generator drives the MOS switch with two possible controls:
 - Inner feedback setting the output voltage at a nominal point (e.g. 48 V)
 - Optical input to change the setting voltage within few volts

INFN

GaAs PoC

In order to power the DC-DC system a PoC is used.

- We tested a Broadcom AFBR-406L based on GaAs technology
- Powered through a 808 nm Lumics laser (8W max)
- We used a multimode 200 µm core fiber connected to the pig-tailed laser with an SMA/FC-PC connector, and to the PoC on the other side
- A B1505A Semiconductor Analyzer is used to fix the output voltage and measure the current
- The PoC is slowly cooled down checking its temperature with an RTD sensor.

GaAs PoC

5

In order to power the DC-DC system a PoC is used.

- We tested a Broadcom AFBR-406L based on GaAs technology
- Powered through a 808 nm Lumics laser (8W max)
- We used a multimode 200 µm core fiber connected to the pig-tailed laser with an SMA/FC-PC connector, and to the PoC on the other side
- A B1505A Semiconductor Analyzer is used to fix the output voltage and measure the current
- The PoC is slowly cooled down checking its temperature with an RTD sensor.

UNIVERSITÀ

INFN

Room Temperature

GaAs PoC

In order to power the DC-DC system a PoC is used.

- The curves are labelled according to the laser input current ($P_{opt} \propto I$)
- As reference $3A \rightarrow 1.5 W_{opt}$
- Measurements are take both at RoomT (temperature not fixed but monitored during measurement) and at LN₂ temperature
- A slightly increase in the "open" voltage is observed going from 7 V to 8V for 3000 mA between Room and LN₂ temperature

DI MILANO

DC-DC boost converter

We selected and characterized many components to check their operability at cryogenic temperature, their characteristics and to select the most suitable.

- MOSFET: NTF3055L108T1G, ZXMN10A07FTA, VN2460N8, 2N7002H6327XTSA2, 2N7002CK
 - Lowest on resistance
- Switching Diode: BAV16W, BAS16LD
 - Very similar device, slightly better max current
- Inductor: B82442T1125K000 (680 uH), B8244T1106K050 (10 mH)
 - Good to mitigate ripple
- Capacitor: C1812C104J1GACTU (COG 100 nF)
 - COG for cryogenic use

DC characterization of MOSFET and diode

All **MOSFETs** have been characterized at Room Temperature and a LN2 temperature, with a B1505A Semiconductor Analyzer:

- $I_D vs V_{GS}$ (at various V_{DS}) to measure the **threshold**
- V_{DS} vs I_D (at various V_{GS}) to measure the **on resistance R**_{DS(on)}

We will just show results for a couple of them, the most suitable for the application.

For the **diode** only the forward I-V curve was measured at both Room Temperature and LN2 temperature to measure the **junction voltage V**_p.

MOSFET results

- Drain current vs Gate-to-Source voltage: at 77 K the threshold increases of about 0.6 V
- On resistance reduces considerably at 77 K, for NTF resulting in 30 mΩ.

Diode results

- Diode current vs applied voltage in forward bias mode. The junction voltage increases of about 0.4 V
- The two selected diodes model exhibit the same behavior.

AC characterization of inductor

- The **10 mH inductor** has been tested as it is the most suitable for the application
- An HP 4395A Impedance Analyzer has been used in Reflection mode to analyze the impedance as a function of frequency

Model:

Results are fitted and parameter extracted

12 13/04/2022 N. Gallice | Cryo DC-DC boost converter development

• Fitted parameters are:

T [K]	R [Ω]	L [mH]	C [pF]
$300\mathrm{K}$	106	10	5
$77\mathrm{K}$	20	8	5

- Resonance frequency is 700 kHz (800 kHz) at 300 K (77 K) , thus $f_{SW} = 100$ kHz is a good value
- Series resistance drops drastically at 77 K, giving much better performance to the DC-DC converter

DC-DC boost prototype test bench

- A matrix board is equipped with L1, D1, R1, C1:
 - Load is a 10 $k\Omega$ resistor
- The Q1 (NTF) transistor can be changed to test all models
- **DC input** provided by a **linear supply** (AimTTi PL303QMD-P)
- The input current is monitored with a multimeter (HP 971A)
- The control signal is produced by a Pattern Generator (HP HP 81104A), High-level = 5 V, Low-Level = 0 V and rise/fall time = 3 ns with 100 kHz of period.

The system is tested at room and LN2 temperature, with different inputs (4V, 5V) and different duty cycle [0.1, 0.93].

• Output readout with a Lecroy HDO6104A oscilloscope.

UNIVERSITÀ

DEGLI STUDI DI MILANO INFN

L1

L1	10 mH	
D1	BAV16W	
C1	C0G 100 nF	
R1	10 kΩ	
Q1	NTF3055L108T1G	

DC-DC prototype results

- On the left the output voltage, at RoomT it is limited by the inductor series resistor. At LN2 T, it is possible to reach 50 V at 93% of Duty Cycle.
- The efficiency at LN2 is always greater than 60%

Content

- System overview
- GaAs Power optical Converter (PoC)
- DC-DC boost design
 - Component characterization 🖌
 - Performance 🗸
- Control
 - Design
 - Component qualification
- Conclusions

Control design

The idea is to have an **internal feedback** that keeps the output of the DC-DC boost design at the desired set point through the control of the PWM generator

The set point can be:

- Nominal: Set at the design stage and fixed throughout the entire run. It works in standalone mode
- **External**: The set point can be adjusted with an external communication.

In this way the voltage can be adjustable, but in case of failure of the communication system and/or interfaces, the DC-DC converter will continue working at the nominal set-point.

PWM generator

- To drive the MOS switch we built a PWM (Pulse Width Modulator) generator based on two comparators.
- Some comparators have been tested to work in LN₂
- The first is set in a positive feedback circuit that makes it oscillate, creating a triangle-like waveform
- The second comparator produces the PWM taking as input the triangle waveform and a level that is used to select the output duty cycle.
- The working frequency is ~100 kHz

UNIVERSITÀ

DI MILANO

DEGLI STUDI

INFN

Control feedback

- The output of the DC-DC boost converter is compared with the nominal working point with an error amplifier
- Some operational amplifier have been tested to work in LN₂
- The error amplifier output controls the set level of the PWM generator
- 48.2 V generated and kept constant by the internal feedback at LN₂ temperature (5.5 V input)
- 100 k Ω load \rightarrow 485 μ A
- Efficiency = (48.5 x 0.485)/(5.5 x 10.3) ~ 50% mainly because of control electronics.

External set point

- An external PWM signal drove through an optical fiber can provide an external working point to adjust the nominal one
- The output signal of the buffer stage is summed to the one of the internal working point
- The signal is AC-coupled and in case of absence of communication the R2-R3 divider will bring the DC-DC output back to the pre-set nominal point.
- With the current configuration (5.5 V inpunt) the output can vary in [35V, 51V]

UNIVERSITÀ

DEGLI STUDI

DI MILANO

INFN

Integration considerations

- Next step is the refinement of components values and the design of a PCB
- The PCB will be fully integrated with the DUNE VD Cold Electronics board, we target the DC-DC test in ColdBox #3
- The communication receiver to adjust the working point will be implemented as a daughter board

Assuming a max saturation of 2000 PE per channel, that would correspond to:

2000 [PE/Ch]×5·10⁻⁶[A]×200 [Hz]×20·10⁻⁶[s] = 40 µA/Ch

PoC / Power fibers	Communication fiber	DC-DC	X-ARAPUCA [*]	Tot. Fibers
1	1	1	Up to 5 Ch	2
2	1	1	Up to 10 Ch	3
2	2	2	Up to 10 Ch	4

*Assuming 50% efficiency

INFŃ

20

Conclusions

- A multi stage circuit for bias generation in cryogenic environment (LN₂) has been developed with discrete components
- The different stages have been tested independently and in-sequence, while adding functionalities to the circuit:
 - Typical design for the DC-DC boost converter, fully characterized and operational at LN₂ temperature
 - PWM generation tested in cold, and integrated successfully in the DC-DC design
 - Internal feedback control implemented and tested in LN₂ for internal pre-set working point
 - External control increase flexibility and does not add risk. The optical communication was emulated with an electrical signal and managed to adjust the output voltage [35V, 51V].

and steps forward

- Develop the optical communication at the cryogenic level
- Develop a PCB to be integrated in the DUNE VD Cold Electronics board

