

Cold Digital Readout Status and Component Qualification

Jonathan Eisch, Fermilab DUNE FD2-VD PD CE Workshop April 14, 2022

Cold Digital Readout Concept

Objective: Low part-count digital ADC solution compatible with cryogenic operation.

Cold Digital Readout Operation

- 1. A single low-power ADC clocked by a free-running oscillator continuously digitizes multiple input-channels.
- 2. The samples are transmitted over a single optical fiber using the deterministic-latency JESD204B subclass 2 protocol.
- 3. An FPGA in the warm recovers the transmission/sampling clock and decodes the samples for multiple digitizers.

Analog front-end X10 gain, copied from analog design Could use multiple gains.

Control and timing LED-based signaling over plastic optical fiber, stable at DC levels and multiple MHz in liquid argon.

75MHz free-running crystal oscillator with CMOS output.

ADC and Laser Driver Unique to this design (laser diode shared with analog design)

Power

Linear regulators chosen from existing cryo designs. 5V (Analog front end and controls) 3.3V Laser driver and Oscillator 1.8V digital and analog for ADC

Sterm

Unique Critical Components

• ADC: TI ADS52J90

- 14-bit 16-channel ADC with 5Gbps JESD204B serial output
- Chosen from experience with cold operation in LBNL-Fermilab CryoDAQ targeting Liquid He operation.
- Supports up to 32 differential input channels (configurable)

• Laser Driver: ADI ADN2526 11-Gbps laser driver

- Bias currents set with passive resistors, needs no further configuration
- Stable operation at both lab and cryogenic temperatures without reconfiguration.

Other Unique Components

Oscillator: TXC 7W-75.000MBB-T

- Free-running oscillator chosen from parts known to work in liquid Helium.
- Other parts have been tested

POF 650nm receiver: Broadcom HFBR-2528Z

- TTL/CMOS compatible push-pull output stage.
- Tested working at Liquid Argon/Nitrogen temperatures.
- Wavelength could be seen by SiPMs

POF 650nm transmitter: Broadcom AFBR-1521CZ

- Just a LED in a case.
- Not needed for operation, only register readback for testing.
- Inverters: SN74LVC1GU04DBVR
 - Taken from database
- Level-shifter: SN74LVC8T245DWR
 - Taken from database

Power ICs

Linear Regulator: LP3964EMPX

- Taken from AROGON2_2CH design.
- Supply 3.3V and 5.0V
- Linear Regulator: TPS74201KTWR
 - Taken from database
 - Supplies 1.8V analog and digital
- None of these choices are critical for the design.
- In general, C0G were used where possible, and X5Rs were used where needed.

Control Scheme

This ADC, the ADS52J90, <u>must</u> be configured over SPI before it will transmit data over the JESD204B interface.

The existing board implements the full set of control signals (1 Reset, 4 for full SPI R/W, two timing synchronization)

This could easily be reduced to 4, which could be shared by multiple devices.

By inverting some signals, no transmitters need to be on during normal operation.

The transmitters and receivers have been tested in liquid Argon and have operated reliably.

Power Considerations

Current design uses 3 voltages,

•no obvious way to reduce those with the current parts

 Usual power draw is 520mA @ 5.5V digitizing two channels at 75Mhz.

•450mA before configuration

•From the datasheet: "The ADC is designed to scale its power with the conversion rate."

•4 channels would likely only use slightly more power and could still be transmitted over a single fiber.

• Each controls receiver uses 14mA @ 5V (measured in liquid nitrogen)

System Flexibility

The ADS52J90 has 16 ADCs

Each ADC is attached to 2 sampling circuits, allowing a software choice of either input, or to alternate, sampling up to 32 channels at half the clock rate.

If one input is connected to the sampling circuits for two adjacent ADCs, it can also digitize at twice the clock rate, or digitally averaged for a 3-dB SNR improvement.

While keeping under the serial data limit of 5Gbps, the data from up to 8 ADCs can be transmitted over a single optical fiber. 4x 14-bit ADCs/fiber at 70MHz, for instance.

Table 1.	Scheme	of Driving the	Input Pins	(16-, 32-,	8-Channel	Input Modes)
----------	--------	----------------	------------	------------	-----------	--------------

	CONNECTION TO THE EXTERNAL ANALOG INPUT SIGNAL					
INPUT PAIR	16-CHANNEL INPUT MODE ⁽¹⁾⁽²⁾	32-CHANNEL INPUT MODE	8-CHANNEL INPUT MODE ⁽¹⁾			
IN1	AIN1	AIN1	AIN1			
IN2	—	AIN2	—			
IN3	AIN2	AIN3	AIN1			
IN4	_	AIN4	_			
IN5	AIN3	AIN5	AIN2			
IN6	_	AIN6	_			
IN7	AIN4	AIN7	AIN2			
IN8	_	AIN8	_			
IN9	AIN5	AIN9	AIN3			
IN10	_	AIN10	_			
IN11	AIN6	AIN11	AIN3			
IN12	_	AIN12	_			
IN13	AIN7	AIN13	AIN4			
IN14	_	AIN14	_			
IN15	AIN8	AIN15	AIN4			
IN16	_	AIN16	_			
IN117	ΔΙΝΙΟ	A IN117	AINE			

Table 17. Lane Mapping to CML Pins⁽¹⁾

DEFAULT LANE ID	MAPPING TO THE PINS	2 ADCS PER LANE (8-Lane Mode) ⁽²⁾	4 ADCS PER LANE (4-Lane Mode) ⁽²⁾	8 ADCS PER LANE (2-Lane Mode) ⁽²⁾
1	CML1_OUTP-CML1_OUTM	ADC1, ADC2	ADC1ADC4	ADC1ADC8
2	CML2_OUTP-CML2_OUTM	ADC3, ADC4	_	_
3	CML3_OUTP-CML3_OUTM	ADC5, ADC6	ADC5ADC8	—
4	CML4_OUTP-CML4_OUTM	ADC7, ADC8	_	—
5	CML5_OUTP-CML5_OUTM	ADC9, ADC10	ADC9ADC12	ADC9ADC16
6	CML6_OUTP-CML6_OUTM	ADC11, ADC12	_	—
7	CML7_OUTP-CML7_OUTM	ADC13, ADC14	ADC13ADC16	—
8	CML8_OUTP-CML8_OUTM	ADC15, ADC16	_	—

Status of Testing at Fermilab

SiPM and Cryogenic test-stand is shared with the analog ARGON2 testing effort.

The Cold Digital Readout board operates reliably at both lab temperatures and in liquid Argon/Nitrogen without any configuration changes.

Benchmark data (shown here) taken last Friday. 14-bit digitization at 75MHz

Best fit results Pedestal: 5dc Pedestal RMS: 11.9dc SPE: 107dc SPE RMS: 5.0dc Average SPE/trigger: 0.75

Additional plots from the datasheet

Figure 54. Signal-to-Noise Ratio in 14-Bit, 16-Input Mode

😤 Fermilab

11 4/14/22 Jonathan Eisch I Cold Digital Readout Status and Component Qualification I DUNE FD2-VD PD CE Workshop

Test-stand warm-side readout

CAPTAN+X V2 (Kintex-7) board with 4x SFP+ Mezzanine board and SFP+ module installed. SMA board for external triger.

12 4/14/22 Jonathan Eisch I Cold Digital Readout Status and Component Qualification I DUNE FD2-VD PD CE Workshop