Technology R&D* for CMB-S4

John Ruhl Case Western Reserve University (CMB-S4 Instrument Scientist)

CMB-S4 Science Goals (informal edition):

- Search for the CMB polarization signal from Cosmic Inflation
- Search for the signatures of light relic particles in the CMB angular power spectra
- Take a census of growth, via SZ galaxy clusters, to much lower mass and higher redshift.
- Bust open the window on millimeter-wave transient sources.

CMB-S4 Project In A Nutshell

A deep-wide $N_{\rm eff}$ and Legacy Survey targeting 60% of sky from Chile, using 2 x 6m telescopes, with ~270K detectors in 6 bands.

An ultra-deep "r" survey targeting ~3% of the sky from the South Pole, using 18 x 0.5m small refractor telescopes with ~150K detectors in 8 bands and a dedicated de-lensing 5m telescope with ~130K detectors in 7 bands.

For comparison: AdvACT (9K det, 3 wafers), SPT3g (16K det, 10 wafers)

Large Cryogenic Cameras

LAT Receiver - 85 tubes

SAT Receiver - 3 tubes

CMB-S4's "enabling, niche technologies":

- Superconducting TES bolometers, in bulk.
- Dichroic, dual-polarization pixels.
- Time-domain mux cryogenic SQUID-based readout, in bulk.
- High-throughput millimeter-wave receivers with
 - low loss
 - effective thermal infrared heat-load management
 - low added photon loading
- Reliable 100mK cryogenics
- High-throughput millimeter-wave telescopes, especially with "gapless mirrors"

Superconducting TES Detectors

Key enabling features:

- Quantity, =>
 - mechanical/electrical yield,
 - ability to repeatedly hit required specs (efficiency, noise, saturation power, bands...)
 - at multiple fab facilities
- Uniformity across large wafers
- On-silicon bandpass filters and splitters
- "Calibration" TES with 2nd, higher transition temperature.

Time-division SQUID MUX Readout:

Chosen from three alternatives because it was the most mature option.

Challenges: SQUID quantity, reliable high-density superconducting flex cables.

100mK SQUIDs, 1 per detector ~60K boards needed

4K SQUID arrays, 1 per ~60 detectors ~8000 arrays needed

100mK superconducting flex cables, 2mil pitch

Millimeter-wave cryo-optics:

We want high efficiency in all the optics to avoid losing CMB photons (signal).

We especially want low loss in the T > 10K optics to avoid the additional penalty of adding photons, which adds noise.

Current baseline: 35% to 65% of the optical power is from the instrument, rather

than the sky (= atmosphere + CMB).

=> R&D for better low-loss millimeter-wave windows and thermal IR filters (which are at T>10 K), is well motivated.

(Mirror gaps are also a significant emitter for the CHLAT low frequency bands.)

AR-coated Alumina IR filter (SPT, U. Illinois)

"Enabling" Cryogenic systems:

- Pulse-tube coolers to 4K (20 years ago this was LHe!)
- Commercial dilution refrigerators to 100mK
 - Colder => better sensitivity at low frequencies where photon noise is low.
 - No "recycling" time lost, as with many current 300mK 3He sorption systems)
- Remote sites => Electrical Power is supplied by diesel generators.
 Fuel = \$\$\$

~50% of entire electrical power budget is for cryogenics

=> lower power cryogenics is very desirable.

Large monolithic mirrors

All CMB telescopes > 3m in size so far have been constructed from discrete panels, with ~1mm gaps, because machining large mirrors to the required precision is... hard.

Those gaps are **emissive** (photon loading!), and cause large-angle **"diffraction sidelobes"** by virtue of the grid of narrow line features they impose on the primary reflected E-field.

Eliminating those gaps by using a large monolithic ("gapless") mirror solves both of these problems. The elimination of those wide-angle sidelobes is a critical step in using the TMA for the large angle "r" science.

The TMA working group has designed and had a contractor machine a 5m "monolithic" primary mirror! (Machined from two halves, bolted together before final machining pass)

Preliminary rms, on machine by contractor, is 14 microns, well below spec. (Still to be verified by team)

Summary

- CMB-S4 is enabled by a variety of important technologies that we are working to produce in larger quantitities than before.
 - Our baseline model only requires performance similar to previous-generation experiments.
- Some areas for performance improvements:
 - Improved optical efficiency, especially of the warm components, will improve sensitivity.
 - Gapless mirrors will help large-aperture telescopes to contribute to low-ell (cosmic inflation) science.
 - Cryo-systems power consumption improvements would reduce operations costs.

End