Vertex finding with Pandora Deep Learning

Andy Chappell
11/04/2022
FD Sim/Reco Meeting

WARWICK

Reminder

WARWICK

- Identifying the neutrino interaction vertex seems like something a CNN should be good at
- But defining a single point/region as the signal means you need a huge number of events to train the network

- Instead encode the truth in all hits in each event, by describing the distance each hit is from the interaction vertex
- Gives the network a direct handle on how all of the information in a single event relates back to the vertex location
- Post-process the distance classification to resolve the interaction vertex

Evolving the network

- Preliminary results were quite reasonable (dr68 ~2.6 cm), particularly with the lack of tuning, slightly under-performing the existing vertex finding (dr68 ~2.1 cm)
- Problem 1: Resolution
- Events are sampled to a 256×256 pixel image per view
- If the event spans more than a couple of metres the pixels begin to represent large regions, limiting the network resolution
- Adding a second pass
- To address this problem, take the result of the first pass and zoom in to this region to identify the vertex at higher precision

Training the second pass

- We want this to be quick, so we compromise
- Smaller images at 128×128 pixels
- $64 \mathrm{~cm} \times 64 \mathrm{~cm}$ event region, allowing for 0.5 cm resolution
- If the first pass vertex is off by much more than 32 cm , we're probably out of luck
- Will comment on mitigation later
- To define the training dataset I take a perturbed version of the true vertex
- Gaussian $(0 \mathrm{~cm}, 15 \mathrm{~cm})$ perturbation in X and Z
- Treat this as the centre of the image
- Our first pass reconstruction will be imperfect and we want to ensure the network doesn't simply learn to pick the centre of the image in the second pass
- A check is applied to ensure that the region contains hits
- No check on true vertex containment because this technique can, in principle, find uncontained vertices, so we should let it try

Training the second pass

- Second pass network appears to train well
- W view indicates there may be scope for further improvement with tweaks to the training procedure
- Given 19 distance classes accuracy is quite good
- ~80\% for exact class matches
- ~94\% for exact or adjacent class match

Reco - True Vertex Deltas

WARWICK

- Compared first and second pass performance on a 50,000 event sample
- Even split v_{μ} and v_{e} MCC $111 \times 2 \times 6$
- Pass 1 dr68: 2.6 cm
- Pass 2 dr68: 0.9 cm
- Unsurprisingly, performance is similar beyond about 10 cm , as pass 1 sets the scale

Reco - True Vertex Deltas

- Reco - True plots centred on zero in x and y
- Pass 2 z shows bias to low reconstructed z
- Peak at ${ }^{\sim}-0.1 \mathrm{~cm}$
- Interestingly pass 1 shows a slightly larger bias to high reconstructed z
- Peak at $\sim 0.2 \mathrm{~cm}$

Example

Pass $1-3.2 \mathrm{~cm}$

True
Reco

Pass 2-0.3 cm

Next steps

- Dealing with large pass 1 errors
- Picking entirely the wrong region in pass 1 means pass 2 isn't too helpful
- Identify a few candidates in pass 1 and zoom in on each
- Consistency checks between passes
- Sometimes the zoom region can be a bit sparse/messy
- This can make the second pass more difficult to assess than the first
- Allow 2D->3D matching to consider both pass 1 and pass 2 results
- BDT integration
- Might the vertex position information prove a complementary variable to other BDT variables?
- This is the approach Jhanzeb was looking into when working on vertexing
- Atmospheric neutrino vertexing and vertexing in the Vertical Drift geometry
- Longer term
- Secondary vertexing

