US LARP Beam-Beam and Electron Lens Work

Alexander Valishev with input from R.W.Assmann, S.Fartoukh, V.Lebedev, I.Morozov, T.Pieloni, V.Previtali, J.Qiang, S.Redaelli, B.Salvachua, F.Schmidt, D.Shatilov, G.Stancari, S.White, G.Valentino, M.Zobov

> US LARP DOE Review July 9-10, 2012

Outline

- Mission of beam-beam and e-lens tasks
- Tevatron and RHIC beam-beam experiments
- Beam-beam simulations
 - Code development
 - Beam-beam in HL-LHC
- Hollow electron beam lens
 - . Summary of experimental results
 - . CERN/LHC integration
- Plans
 - New Initiative: Optical Stochastic Cooling experiment at Fermilab

LARP Beam-Beam Task

- Goals
 - Develop and maintain simulation tools
 - Support beam-beam related experiments at existing machines (Tevatron, RHIC)
 - Apply expertise for LHC upgrades
- Contributors
 - BNL, LBNL, FNAL, (SLAC)
- Past work highlights
 - Beam-beam effects at Tevatron
 - Long-range compensation with wires
 - Head-on compensation with electron lens
 - . Work changed direction to hollow e-beam collimation

Tevatron End-of-Run Beam-Beam Experiments

- During the last two years, the machine was operating in a stable configuration
 - This gave the possibility to plan and carry out beam physics experiments for the benefit of future machines
 - There was strong interest from CERN, BNL, LBNL to study a number of topics at Tevatron before it is switched off forever
- Beam-beam experiments
 - Planned and carried out with strong participation by LARP
 - 43 hours of beam time used in two-week period in August 2011
 - Concentrated on head-on effects

Topics of Tevatron Beam-Beam Experiments

- AC dipole with colliding beams
 - AC dipole is a device that adiabatically excites transverse oscillations of the beam. Turn-by-turn detection of these oscillations allows to restore the beam optics. It is the method currently in use at the LHC

Effect of Beam-Beam interaction on coherent stability

- Colliding beams represent a system of coupled oscillators with their eigen-frequencies determined by beam and machine properties. Also, coherent instabilities driven by machine impedance are affected by the nonlinearity of beambeam interaction
- Beam-Beam resonances vs. transverse separation
- Effect of bunch length to beta-function ratio (betatron phase averaging)

AC Dipole with Beam-Beam

- The goal was to excite the "weak" beam through the strong beam using the AC-dipole
 - We had to reverse the weak-strong set-up since the BPM system operates in a turn-by-turn mode for protons only - use lowest possible proton intensity against nominal low emittance pbars
 - Record the turn-by-turn BPM data around the ring
 - Changes to the linear lattice function due to BB can be derived from
 a reference measurement with protons only
- Successfully demonstrated the technique with colliding beams (3x3 bunches in collision configuration)! No instability or emittance growth after multiple excitations
- Difficulties
 - "Strong" antiproton beam is also excited
 - Coupling was strong
 - Weak proton beam => BPM noise worse than usual

Effect of Beam-Beam on Coherent Stability

- The threshold betatron tune chromaticity vas studied as a function of beam-beam interaction
 - Nominally Tevatron operated at C=+14 without collisions and +5 at collisions
 - It was observed that for the nominal bunch intensity the instability is very fast slightly above C=0, causing a quench
 - During the studies it was verified that whenever beam-beam interaction is present, any chromaticity value can be dialed in without causing the head-tail instability
 - The effect was independent of the tune working point
- Difficulties
 - Studies of the effect of beam brightness were not performed due to unavailable bright antiprotons
 - Instrumentation did not acquire quantitative data on the instability increment

Effect of Transverse Separation

- Transverse separation scans were performed both in the • horizontal and vertical plane
 - Emittance growth was not observed during the scans
 - Losses peak at the transverse separation of 1 to 1.5σ , consistent with simulations
 - The effect is working point-dependent

A.Valishev, 2012 US LARP DoE Review

Effect of β^*/σ_{τ}

- The goal was to collide bunches at different bunch length/ • beta* ratios
 - This was achieved by cogging (moving antiproton bunches longitudinally wrt protons, thus colliding off beta minimum)
 - Produced excellent data, in qualitative agreement with expectations! Good for benchmarking simulations

A.Valishev, 2012 US LARP DoE Review

RHIC Beam-Beam Experiments

- At RHIC, beam time is regularly allocated for accelerator physics experiments
- This year several beam-beam studies were performed
 - Coherent beam-beam effects: modes suppression, tune scans
 - Beam beam and noise: white noise, orbit modulations, π -mode excitation
 - Large Piwinski angle was proposed. Due to a lack of time it was not conducted. Synchrotron tune much smaller at RHIC
- The beam-beam and noise experiments were organized in collaboration with CERN

🛟 Fermilab

Suppression of Coherent Beam-Beam Modes

• Coherent modes can be suppresses by splitting the tunes by an amount $\Delta Q > \xi$

- Past studies (Y. Alexahin et al. LHC Project-Note 226) predicted excitation of coherent beam-beam resonances leading to emittance blow-up
- Interesting to verify experimentally. At RHIC it is possible to move one beam above 7/10 resonance to split the tunes by sufficient amount
- In this configuration simulations show a clear suppression of the modes

Experiment at RHIC

- 4 fills done with split tunes
- Strong emittance blow-up observed when going into collision in 3 of them
- Excitation of odd order resonance (offset collision) – tune dependent effect

Also observed in simulations
 requires more detailed analysis

🛟 Fermilab

RHIC Beam-Beam + Noise Experiment

- The beam-beam and noise experiment was fully driven by CERN interests as relevant for operation with crab cavities and transverse damper
- Goal: understand the impact of noise on beambeam interactions
- Experimental setup:
 - Fill RHIC with bunches of different ξ
 - Inject white noise into the beam and measure emittance blow-up as a function of ξ
- Preliminary results
 - The luminosity decay appears to be linear with noise amplitude \rightarrow to be checked in simulations

LARP Beam-Beam Simulations

- LARP is now heavily involved in HL-LHC beam-beam studies
 - A.Valishev (FNAL) is HL-LHC WP2 Task 2.5 (Beam-Beam) leader
 - S.White (Toohig fellow, BNL) concentrates on beam-beam
 - J.Qiang, S.Paret (LBNL) work on beam-beam with crab cavities
 - D.Shatilov (BINP, Russia) was partially funded by LARP to work at FNAL for 6 months on beam-beam simulations/code development

LARP Beam-Beam Simulations Goals

- Investigate the options for HL-LHC
 - Choice of basic options β^* , crossing scheme
 - Luminosity levelling techniques
 - . Imperfections
- Develop self-consistent simulations of the beam-beam phenomena with other dynamical effects
 - . Crab cavity
 - Interplay with machine impedance
- Help understand the experimental data from LHC as it becomes available
 - Also use RHIC and Tevatron experimental data for benchmarking simulations
- Support new ideas

Simulation Methods, HL-LHC Integration

- Begin with madx lattice (WP2 Task 2.1) and performance parameters (Task 2.6)
 - Present performance data (CERN BB group)
 - Impedance models (Task 2.4)
- Tools / Characteristics for evaluation
 - Tune footprint (weak-strong, very fast)
 - Dynamic Aperture (weak-strong, fast)
 - Full-scale multiparticle simulation of intensity and emittance life time (weak-strong, slow)
 - Self-consistent multi-effect simulation (strong-strong, short reach as far as the number of turns, slowest)

Simulation Tools

Weak-strong

- SixTrack (F. Schmidt). Well-tested code, the backbone of tracking studies for LHC design.
- Lifetrac (D. Shatilov). Many years of use for electron machines and Tevatron. Very good support of 6D beam-beam with crossing angle
- The two codes were benchmarked against each other as part of LARP collaboration. Good agreement for the case of LHC simulations was established.

(CERN-ATS-Note-2012-040)

- Strong-Strong
 - BeamBeam3D (J. Qiang). Many users LBNL, FNAL, BNL
 - BBSIM (T. Sen). Module for crab-cavity

🛟 Fermilab

A.Valishev, 2012 US LARP DoE Review

Fermilab

Lifetrac

- Weak-strong beam-beam tracking code
 - Frequency Map Analysis (J. Lascar, "The Chaotic Motion of the Solar System: A Numerical Estimate of the Size of the Chaotic Zones", Icarus 88, 266, 1990)
 - Multi-particle, multi-turn tracking
 - Machine model with full set of features imported from madx lattice, crossing schemes, nonlinearities

A.Valishev, 2012 US LARP DoE Review

Study of Flat-Bunch Option

- Found that luminosity gain is highly dependent on the actual longitudinal profile and Piwinski angle. For realistic case the gain much less than $\sqrt{}$
- Studied limitations due to synchro-betatron dynamics

Evaluation of HL-LHC Options (Ongoing)

• FMA and DA for $\beta^*=15$ cm HL-LHC optics

20

Simulation of Interplay of Impedance and Beam-Beam (Ongoing)

- Instabilities were observed in collision at the LHC. The actual cure is to run with the transverse damper on in collision: emittance blow up
- HL-LHC will run with significantly higher bunch intensity issues?
- We have a well benchmarked strong-strong beam-beam code (BB3D, J. Qiang)
 - Added impedance model \rightarrow resistive wall and broadband resonator implemented for multi-bunch
 - Benchmark against hea-dtail ongoing using SPS lattice which was already extensively studied – plan also to cross-check model against VEPP data
 - The challenge would be to simulate a full LHC train with head-on and long-range interactions → the code needs significant development in terms of computing efficiency to achieve this goal (multi-bunch parallelization?)

Hollow Electron Beam Collimator (Diffuser) The Concept

HORIZONTAL POSITION / or

0

2

-2

- Enhance diffusion for halo particles to decrease halo population and suppress loss spikes
 - No material damage compatible with high power

Collimation with Hollow Electron Beams Modification of Tevatron Electron Lens TEL-2

Tungsten dispenser cathode with convex surface. Diameter 15mm, hole 9mm

G.Stancari

Status of HEBC

- Tevatron experiments (Oct. '10 Sep. '11) provided experimental foundation
- Main results
 - compatibility with collider operations
 - alignment is reliable and reproducible
 - smooth halo removal
 - removal rate vs. particle amplitude
 - negligible effects on the core (particle removal or emittance growth)
 - transverse beam diffusion enhancement
 - suppression of loss-rate fluctuations (beam jitter, tune changes)
 - effects on collimation efficiency
- First results:
 - Phys. Rev. Lett. 107, 084802 (2011)
 - IPAC11, p. 1939
 - APS/DPF Proceedings, arXiv:1110.0144 [physics.acc-ph]

G.Stancari Diffusion Measurements at the Tevatron and LHC

A.Valishev, 2012 US LARP DoE Review

parameter related to diffusion rate

Time [s]

G.Stancari

Current Directions

- Numerical simulations
 - Understanding of Tevatron observations
 - Predictions for LHC
 - Main observables
 - halo removal rates
 - diffusion enhancement
- Development of hollow electron guns
 - Preserve design/testing technology
 - Produce prototypes for LHC
- TEL2 integration in LHC/SPS
 - . Preparatory work at FNAL
 - Scientific and technical aspects

Simulations of Diffusion in Tevatron (ongoing)

- Macro-particle simulation
 - The goal is to reproduce Tevatron observations
 - With/without beam-beam and HEBC

Simulations of HEBC in Tevatron and LHC (ongoing)

- Macro-particle simulation
 - . The goal is to reproduce Tevatron observations
 - Predict TEL-2 performance in LHC (or SPS)

I.Morozov

A.Valishev, 2012 US LARP DoE Review

New 25-mm Hollow Gun

Application of HEBC at CERN

• Purpose:

- study physics of hollow electron beam collimation in LHC
- complement primary collimators
- . flexible halo control
- Practical considerations:
 - preparatory studies possible during dead time of accelerator complex (beam alignment, pulse synchronization)
 - can be operated parasitically (abort gap, few bunches, end of fill)
 - safe: can always be turned off
 - potentially high physics payoff for relatively low cost and low risk
- When and where?
 - . LHC or SPS
 - LHC more interesting, better beam and diagnostics
 - SPS higher availability, easier installation
 - Is LS1 installation feasible? Schedule:
 - LHC/SPS dynamics simulations and integration, impedance budget finish in August
 - Proposal to LMC in September

G.Stancari

TEL-2 Integration Study in LHC: IR4/RB44

- Physical space is tight but mechanical integration seems feasible
- No liquid N₂ available. Possible solutions: use high pressure helium (requires TEL2 tests) or reduce pressure. Substantial cryogenic work may be required
- Some preparatory work can be done at Fermilab:
 - vacuum and cryogenic checks
 - residual radioactivity

New (for LARP) Idea: Optical Stochastic Cooling

- Suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- · Never tested experimentally
- OSC obeys the same principles as the microwave stochastic cooling, but exploits the superior bandwidth of optical amplifiers ~10¹⁴ Hz
- · Undulator can be used as pickup & kicker
- · Pick-up and Kicker should be installed at locations with nonzero dispersion to have both \perp and L cooling

🛟 Fermilab

🛟 Fermilab

OSC for LHC

Beam energy	6 TeV
Bunch population	1.5·10 ¹¹
Number of bunches	2808
Initial rms norm. <u>emittance</u>	2 mm mrad
Initial momentum spread	0.95·10 ⁻⁴
Basic Wave Length of OSC	0.2 μm
Undulator type	<u>helical</u>
Undulator parameter	1.93
Undulator magnetic field	11 T
Undulator period	3.5 m
Number of periods	29
Undulator length	100 m
Total power of SR from one undulator	37 W
Longitudinal cooling range	3σ
Transverse cooling range	5.5σ
Longitudinal emittance cooling time	5.5 h
Transverse emittance cooling time, τ_x = τ_x	4 h

A.Valishev, 2012 US LARP DoE Review

V.Lebedev

OSC for LHC

Beta-functions and dispersion for OSC section; Only half of each undulator shown (yellow rectangles)

Total length of cooling section	300 m
Magnetic field in dipole chicane	10 T
Dipole length	12.7 m
Horizontal beam offset in chicane	100 mm
Delay in the chicane	0.52 mm
M ₅₆	0.96 mm
Partial M ₅₆	0.26 mm

Parameters of Quadrupoles			
	L [m]	G [<u>kG</u> /cm]	
Qf	8	20.43	
Qd	8	-17.95	
Qc	3	-4.5	

OSC for LHC

- Passive optical stochastic cooling is sufficient to prevent emittance dilution and perform luminosity leveling
 - . Alternative to crab cavity and other luminosity leveling techniques
- · Cooling effectiveness grows with wiggler magnetic field
 - . Using larger B would increase cooling
 - The parameters of proposed setup can be achieved with modern technology
- Beam optics manipulations allows one to adjust distribution of cooling decrements between different degrees of freedom
- Experimental proof is necessary
 - It can be performed in a small ring with electrons (E~150 MeV)
 - Fermilab is constructing IOTA ring for accelerator physics experiments with option to include OSC
 - Should LHC be interested in this technology, it fits well the mission of LARP to participate in the proof-of-principle experiment and perform studies of integration into the LHC

Summary

- LARP beam-beam task is well integrated into HL-LHC study
 - Good team formed over years
 - + now a Toohig fellow S.White
 - Expect to make valuable contribution to the luminosity upgrade studies
- Hollow Electron Beam lens Collimator is a promising technology that was developed by LARP
 - · Plan to perform a test at CERN
 - Proposal to LMC in September
 - Work on details of application at the LHC ongoing
 - Toohig fellow V.Previtali
- Propose Optical Stochastic Cooling for luminosity leveling
 - . Support proof-of-principle experiment at Fermilab?