

Analysis discussion

April 14th, 2022

Fermilab U.S. DEPARTMENT OF Office of Science

Proposed sensor iteration workflow

- 1. Define X/Y ranges, sensor edges, and thresholds in Geometry2022
- 2. Run InitialAnalyzer
 - Get strip centers \rightarrow copy to Geometry2022
 - Get delay map \rightarrow keep in output directory
- 3. Run Analyze
 - Run DoPositionRecoFit.py \rightarrow copy parameters to Geometry2022
 - If RecoFit parameters are changed -> must re-run Analyze to see the impact.
- 4. Run Align (1-2 iterations, not too many)
 - Get Z, alpha, beta, gamma \rightarrow copy to Geometry 2022
- 5. Repeat steps $2 \rightarrow 3 \rightarrow 4$ until Align output is stable
 - #2 & #3 should change after running #4, but probably #4 output won't change again.

Goal plots for sensor performance

- Spatial resolution
 - sigma(deltaX) for all events ("global")
 - sigma(deltaX) vs XY ("local")
 - sigma(deltaX) vs X
 - mean(deltaX) vs X and vs Y—flatness would confirm good angular alignment
- Time resolution (multi-channel and single-channel)
 - sigma(deltaT) for all events ("global")
 - sigma(deltaT) vs XY ("local")
 - sigma(deltaT) vs X
 - sigma(deltaT) with XY taken from LGAD reco.
 - mu(deltaX) vs X, Y, XY \rightarrow should confirm delay corrections

Other important plots

- Averaged & normalized pulse shape comparisons
 - tiny vs 5mm vs 1cm vs 2.5cm
 - variety of widths
 - Small and large signals from same sensor
- Overlay of amplitude fraction vs X (output of PositionRecoFit) for various sensors
 - Impact of metal size.

Assignments

- Claudio
 - Align procedure
- Rene
 - Pulse shape comparisons
- Ryan
 - InitialAnalyzer → time delays
 - Use leptonSF helper
- Shirsendu
 - Run timing analysis and organize results
- Chris
 - Update code to run on more sensors

