
Unstructured Conditions 
Database (UConDB)
Igor Mandrichenko
DUNE Databases Meeting
April 13, 2022



What is Conditions Database ?
Generally, a conditions database is a record of an 
object state changes as a function of the 
observation time (a.k.a validity time) 

Object can be:
• Scalar
• Tuple
• Array of tuples indexed by “channel”
• BLOB



What is UConDB ?
Unstructured Conditions Database (UConDB)

- UConDB object is a BLOB
- document (PDF, JSON, XML, CSV, text, 

FHICL, HDF5, …)
- image
- anything

- The database is unaware of BLOB’s internal 
structure



Timeline

A sequence of timestamped (observation time) BLOB versions (observations) 
of the object is a Timeline

UConDB records (independent) timelines for multiple objects, identified by 
name



Timeline
Recording time is the time at 
which the version was 
actually recorded in the 
database

Tr ≠ Tv



Timeline
If a versions with Tv in the 
past w.r.t. the latest 
recorded version is added, 
that creates a new timeline 
and “hides” the current one

→ Timeline must be 
recorded monotonically

Old timeline is not deleted, remains in the database as hidden and 
can be retrieved



Interpolation within a timeline
Assuming some sort of state 
continuity along the timeline

Knowing the previous and the 
next state of the object, 
intermediate state can be 
interpolated somehow

• Application specific
• Simplest: assume constant 

until next change

t3 ??

Interpolation is not always meaningful. Example: runs configuration
Run configuration for run #2 can not be derived from #1 and #3



UConDB Data Model
Database

• Folders (name)
• Objects (name)

• Versions (Tv, Tr, …)

Object name may contain slashes:
/folder/path/to/object

It’s unstructured:
● Objects in the folder do not have to be of the same structure
● Versions of same object do not have to be of the same structure



Version properties
• Tv - observation time

• Numeric, default=0
• Assigned by the user, does not actually have to be time

• Tr - version record time
• Auto-assigned

• Id
• Integer, unique across the folder
• Auto-assigned

• Key
• Text, unique for the object
• Assigned by the user, optional, can be moved to another version

• Tags
• Text
• Assigned by the user, optional

• Value - BLOB 
• Checksum (Adler32)
• Size (bytes)



Creating a Version
When creating a version, the client specifies:

• Folder name
• Object name 
• Value (BLOB)
• Optionally:

• Key, can be moved from an existing version
• One or more tags
• Tv

The database returns:
• Version ID



Retrieving a Version
The client specifies:

• Folder name
• Object name
• Optionally:

• Observation time (Tv) as a number, default = current timestamp
• current object timeline

• Tag - only versions with the specified tag will be returned
• retrieve hidden timelines

• Record time (Tr) - do not return versions created since Tr
• retrieve hidden timelines

• Key - return version by the key (Tv, Tr, tag ignored)
• Version ID - return version by ID (Tv, Tr, tag ignored)



Interpolation
Interpolation: constant between updates

● find the BLOB value with Tv 
○ <= the specified Tv
○ closest to the specified Tv

Interpolation enabled if version selected with:
• Tv (default = now)
• Tag + Tv (hidden timelines)
• Tr + Tv (hidden timelines)

Interpolation (and timelining) disabled:
• Key
• Version ID



REST Interface: writing
Uploading:

curl -T /data/file.txt \

-X POST \

http://.../data/folder/object?tv=123.4

Authentication: 
• RFC2617, digest authentication
• shared password used to calculate digital signature but not sent over the 

wire
curl -T /data/file.txt \ 

-X POST \ 

--digest -u user:password \ 

http://.../data/folder/object?tv=123.4 



REST Interface: reading
by Tv:

 curl -o /data/file.txt http://.../data/folder/object?tv=1234.5

metadata:
 curl http://.../data/folder/object?tv=1234.5&meta_only=yes

returns metadata only, including version id, as JSON

by id:
 curl -o /data/file.txt http://.../data/folder/object?version_id=1234

with tag:
 curl -o /data/file.txt http://.../data/folder/object?tv=1234.5&tag=v3_4_5



Documentation
https://ucondb.readthedocs.io



BACKUP



UConDB Design and Deployment

API, tools - Python
Metadata - Postgres
Data storage - pluggable implementations

• key/BLOB interface adaptor
• Postgres

• smaller databases
• CouchBase - distributed NoSQL product

• larger databases, horizontal scalability, memory cache, data replication, HA



ProtoDUNE Run Configurations DB
UConDB with Postgres data backend

~5000 run configurations
FHICL file
Average size ~3MB

~16 GB total data size

Example:
http://dbdata0vm.fnal.gov:9090/protodune_ucon_prod/app/data/sp_protodune/configuration?key=5144

run number



BACKUP
BACKUP



UConDB Concepts
• Database is organized as a set of named folders
• Objects (BLOBs) live inside folders
• Object has a name unique for the folder

• Object identification: <folder name, object name>
• Object has versions (i.e. measurements, observations)
• Version properties:

• Tv - numeric validity time (observation time)
• Tr - version creation time (record time)
• Value - BLOB 
• Id - an integer, automatically assigned by the DB when the 

version is created and returned to the user
• Key - text - unique user defined version identifier (optional)
• Tag(s) - text - optional - can be shared by many 

objects/versions



UConDB Data Model



Recording Data
To record an object version, specify:

• Folder name (required)
• Object name (required)
• Tag (optional)
• Key (optional)
• Value - BLOB

Database returns
• Generated numeric version ID (in case you care to 

remember it)



Reading Data
Object version can be retrieved by:

• Folder name (required)
• Object name (required)
• Tv (optional, default: current time)
• Tr - record time specification (optional)
• Tag (optional)
• Key (optional)
• ID (optional)

Metadata
• List of objects in the folder
• Versions for object
• Version metadata
• Tags for folder



Who am I ?
• Igor Mandrichenko
• 20+ years with FNAL CD
• Used to lead the Scientific DB Applications Group

• Stephen White leads it now 
• Lead development of:

• Hardware DB, IFBeamDB
• Stephen’s group owns them now

• Developed Minerva ConDB, ConDB, UConDB
• Still “own” and run them
• Operations help from Stephen’s group


