\\ \title{

Beyond the Standard Model
 \title{ \section*{Beyond the Standard Model on the energy frontier}

 on the energy frontier}}

USQCD lattice results of last 12 months and future plans

LQCD-ext 2012
USQCD BSM
Julius Kuti
University of California, San Diego

LQCD-ext 2012 DOE panel review, May 16, 2012

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

Large Hadron Collider - CERN

 primary mission:- Search for Higgs particle
- Origin of Electroweak symmetry breaking
- Is there a Standard Model Higgs particle?
- If not, what generates the masses of the weak bosons and fermions?
- New strong dynamics?
- Composite Higgs mechanism?

Primary focus of USQCD BSM effort and this report

SUSY projects are progressing well with new simulations planned for next year

Atlas and CMS compared (from Vivek Sharma)

For low Higgs mass hypothesis both CMS \& ATLAS see

 an excess in event yield over expected background

ATLAS excess at $M \approx 126 \mathrm{GeV}$

CMS excess at $M \approx 125 \mathrm{GeV}$

Outline

- LHC Higgs search and BSM implications focus of USOCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

What comes at the end of the LHC run?

- light Higgs with non-SM couplings (dilaton?)
- Heavy Higgs, or Higgsless
- SM Higgs (SUSY symmetry breaking?)
- USQCD composite Higgs and SUSY - timely efforts

What comes at the end of the LHC run?

- light Higgs with non-SM couplings (dilaton?)
- Heavy Higgs, or Higgsless
- SM Higgs (SUSY symmetry breaking?)
- USQCD composite Higgs and SUSY - timely efforts
- Composite Higgs mechanism
- The paradigm is important again
- Higgsless QCD-like (cutoff \wedge to 3 TeV)
- changes close to conformal windo
- non-perturbative lattice studies needed
- USQCD effort will be shown on:

What comes at the end of the LHC run?

- light Higgs with non-SM couplings (dilaton?)
- Heavy Higgs, or Higgsless
- SM Higgs (SUSY symmetry breaking?)
- USQCD composite Higgs and SUSY - timely efforts

composite Higgs? example: $N f=2 \mathrm{SU}(3)$ sextet rep

Chiral symmetry breaking turns conformal FP into walking

Extended Technicolor paradigm:

- requires walking gauge coupling chiral SB on $\Lambda_{T C} \sim T e V$ scale
- fermion mass generation from scale at $\Lambda_{\text {ETC }} \sim 100-1000 \Lambda_{\text {TC }}$
- can solve problem of flavor changing currents
- composite Higgs mechanism
- broken scale invariance (Dilaton) light non-SM composite Higgs particle?
- can avoid conflict with EW precision constraints
- candidate models require nonperturbative lattice studies
- focus is on composite Higgs mechanism
- become Iongitudinal components of weak bosons
$\Lambda_{T C} \sim \mathrm{TeV}$
- composite Higgs mechanism scale of Higgs condensate $\sim \mathbf{F}=\mathbf{2 5 0} \mathbf{~ G e V}$
- flavor changing currents and fermion mass generation would be problems
- conflicts with EW precision constraints?

important for fermion mass generation

 anomalous dimension of $\langle\bar{\psi} \psi\rangle$

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

for each rep BSM interest is below conformal window but close to it:
USQCD BSM results of last 12 months in 3 reps including new projects just starting

USQCD BSM project sites using LQCD-ext hardware \& SciDAC software support
(afew years ago map was empty)

several USQCD BSM groups study the composite Higgs mechanism TC scale - stretched to ETC scale by walking gauge coupling
fermion mass generation is open problem - new theory on ETC scale?

- 32 new USQCD BSM 2011-2012 publications

(size of BSM effort ~ 20\% of USQCD)

- impact: over 200 citations for new papers
 - USQCD BSM is competing well world-wide in this field

Approaching Conformality with Ten Flavors

Thomas Appelquist, Richard C. Brower, Michael I. Buchoff, Michael Cheng, Saul D. Cohen, George T. Fleming, Joe Kiskis, Meifeng Lin, Heechang Na, Ethan T. Neil et al. FERMILAB-PUB-12-111-T, LLNL-JRNL-548639,NSF-KITP-12-069. -Print: arXiv:1204.6000 [hep-ph]

WW Scattering Parameters via Pseudoscalar Phase Shifts.
Thomas Appelquist (Yale U.), Ron Babich, Richard C. Brower (Boston U.), Michael I. Buchoff, Michael Cheng (LLNL, Livermore),
Thomas Appelquist (Yale U.), Ron Babich, Richard C. Brower (Boston U.), Michael I. Buchoff, Michael Cheng (LLNL, Livermore),
Joe Kiskis (UC. Davis), Meifeng Lin (Yale U.).)et al. Jan 2012. 8 pp.
FERMILAB-PUB-12-012-T,LLNL-JRNL-499587
Published in Phys.Rev. D85 (2012) 074505
e-Print: arXiv:1201.3977 [hep-lat]
Lattice Simulations and Infrared Conformality.
T. Appelquist, G.T. Fleming, M.F. Lin (Yale U.), E.T. Neil (Fermilab), D.A. Schaich (Boston 1

Published in Phys.Rev. D84 (2011) 054501
e-Print: arXiv:1106.2148 [hep-lat]
Parity Doubling and the S Parameter Below the Conformal Window.
LSD Collaboration (Thomas Appelquist (Yale U.) et al.). Sep 2010.4 pp.
Published in Phys.Rev.Lett. 106 (2011) 231601
e-Print: arXiv:1009.5967 [hep-ph]
Twelve massless flavors and three colors below the conformal window.
Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi, Chris Schroeder (Wuppertal U. \& Kieran Holland (U. Pacific, Stockton), Julius Kuti (UC, San Diego), Daniel Nogradi (Eotvos Published in Phys.Lett. B703 (2011) 348-358 e-Print: arXiv:1104.3124 [hep-lat]
Chiral symmetry breaking in fundamental and sextet fermion representations of SU(3) Zoltan Fommetry breaking in fundamental and sextet fermion representations of SU(Zoltan Fodor, Kieran Holland, Juliu

Twelve fundamental and two sextet fermion flavors
Zoltan Fodor (Wuppertal U.), Kieran Holland (U. Pacific, Stockton), Julius Kuti, Daniel Nogra Published in PoS LAT2011 (2011) 073

MCRG study of 12 fundamental flavors with mixed fundamental-adjoint gauge action Anna Hasenfratz. Dec 2011.7 pp.
e-Print: arXiv:1112.6146 [hep-lat]
Novel phase in SU(3) lattice gauge theory with 12 light fermions Anqi Cheng, Anna Hasenfratz, David Schaich. Nov 2011.4 pp. e-Print: arXiv:1111.2317 [hep-lat]

Published in PoS LATTICE2011 (2011) 0
Conference: C11-07-10

Investigating the sign problem for two-dimensional $N=(2,2)$ and $N=(8,8)$ attice super Yang--Mills theories
Richard Galvez, Simon Catterall (Syracuse U.), Anosh Joseph (Los Alamos), Dhagash Mehta (Syracuse U.). Jan 2012.7 pp.
LA-UR-11-12253, Published in PoS LATTICE2011 (2011) 064 deconstruction lattice description of the D1/D5 brane world-volume gauge theory
Published in PoS LATTICE2011 (2011) 064.Gied (Rensselaer Polv.). 2011. 18 pp.
To appear in the proceedings of Conference:G11-07-10Adv. High Energy Phys. 2011 (2011) 241419
e-Print: arXiv:1201.1924 [hep-lat]
Supersymmetric gauge theories on the lattice: Pfaffian phases and the Neuberger $0 / 0$ problem 4
Dhagash Mehta, Simon Catterall, Richard Galyez (Syracuse Lh), Anosh doseph (Los Alamos). Dec 2011. 7 pp.
LA-UR-11-12297.
Published in PoS LATTICE2011 (2011) 078
To appear in the proceedings of Conference: C11-07-10 conservation in the lattice Wess-Zumino model with Ginsparg-Wilson ermions.
e-Print: arXiv:1112.5413 [hep-lat]
On the sign problem in 2D lattice super Yang-Mills.
Simon Catterall, Richard Galvez (Syracuse U.), Anosh Joseph (Los Alamos), Dhagash Mehta (Syracuse U.).
Published in JHEP 1201 (2012) 108 Effects of flavor-symmetry violation from staggered fermion lattice simulations of gaphene.
e-Print: arXiv:1112.3588 [hep-lat]

Neutralino-hadron scattering in the NMSSM.

Sophie J. Underwood (Adelaide U.), Joel Giedt (Rensselaer Poly.), Anthony W. Thomas, Ross D. Young (Adelaide U.) ADP-12-08-T775.

Backward running or absence of running from Creutz ratios.
Backward running or absence of running from Creutz r
Joel Giedt, Evan Weinberg (Rensselaer Poly)
Conference: C11-07-10
Conference: $\underline{\text { C11-07-10 }}$
-

On-abelian gauga Mis (2011) 045420

e-Print: arXiv:1112.1855 [hep-lat] SU(4) lattice gauge theory with decuplet fermions: Schr odinger functional analysis.
Systematic Errors of the MCRG Methor FERMILAB-PUB-12-036-T.
Simon Catterall, Luigi Del Debbio, Joel Gi e-Print: arXiv:1202.2675 [hep-lat]

Infrared fixed point of the 12 -fermion SU(3) gauge model based on 2-lattice MCRG me $\frac{\text { Anna Hasenfratz (Colorado U.). Jun 2011. } 4 \text { pp. }}{\text { Published in Phys.Rev.Lett. } 108 \text { (2012) } 061601}$ e-Print: arXiv:1106.5293 [hep-lat]

Lattice QCD with 12 Degenerate Quark Flavors Xiao-Yong Jin, Robert D. Mawhinney (Columbia U.). Mar 2012.7 pp. Published in PoS LATTICE2011 (2011) 066 e-Print: arXiv:1203.5855 [hep-lat]

MCRG Minimal Walking Te

MCRG Minimal Walking Technicolor.
Simon Catterall (Syracuse U.), Luigi Del [
EDINBURGH-2011-23.
Published in Phys.Rev. D85 (2012) 0945
e-Print: arXiv:1108.3794 [hep-ph]
An Object oriented code for simulating
Simon Catterall (Syracuse U.), Anosh Jos
e-Print: arXiv:1108.1503 [hep-lat]

Perturbative renormalization of lattice
Simon Catterall (Syracuse U.), Eric Dzien Published in Phys.Rev. D84 (2011) 116901
Anosh Joseph (Syracuse U.), Robert Wel e-Print: arXiv:1109.1237 [hep-lat]
SU-4252-912.
Published in JHEP 1104 (2011) 074 Infrared fixed point in SU(2) gauge theory with adjoint fermions.
e-Print: arXiv:1102.1725 [hep-th]
FERMILAB-PUB-12-031-T.
e-Print: arXiv:1201.0935 [hep-lat]
Gauge theories with fermions in the two-index symmetric representation.
Thomas DeGrand, Yigal Shamir, Benjamin Svetitsky (Colorado U.). Oct 2011.7 pp .
Published in Pos LATTICE2011 (2011) 060
ublished in PoS LATICE2011 (2011) 060
ference: C11-07-10
-Print: arXiv:1110.6845 [hep-lat]
Finite-size scaling tests for spectra in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions.
Thomas DeGrand (Colorado U.). Sep 2011. 8 pp.

Thomas DeGrand (Colorado U.), Yigal Shamir, Benjamin Svetitsky (Tel Aviv U.). Feb 2011. 17 pp.

Mass anomalous dimension in sextet QCD.

Thomas DeGrand (Colorado U.), Yigal Shamir, Benjamin Svetitsky (Tel Aviv U.). Jan 2012. 9 pp

FERMILAB-PUB-11-714-T.
Published in Phys.Rev. D83 (2011) 074507
e-Print: arXiv:1102.2843 [hep-lat]

It is a world-wide effort (USQCD plays leading role)

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort.
- S-parameter (LSD)
- WWW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

S parameter

Constraint from vacuum polarizations $\Pi^{\mu \nu}(Q)$ of EW gauge bosons

$$
\gamma, Z \backsim \sim \sim \sim \underbrace{Q} \gamma, Z
$$

$$
S=4 \pi N_{D} \lim _{Q^{2} \rightarrow 0} \frac{d}{d Q^{2}} \Pi_{V-A}\left(Q^{2}\right)-\Delta S_{S M}
$$

(Linear+chiral log fits to guide the eye)

S parameter

Constraint from vacuum polarizations $\Pi^{\mu \nu}(Q)$ of EW gauge bosons

$$
\wedge 7 \wedge \wedge \wedge \neg \wedge \wedge \wedge \wedge, ~ \neg
$$

Behavior of S-parameter is not QCD-like as we get closer to the conformal window and toward walking coupling scenario

This is also hinted from the spectrum of nearly degenerate parity partner vector and axial vector states

(Linear+chiral log fits to guide the eye)

S parameter

Constraint from vacuum polarizations $\Pi^{\mu \nu}(Q)$ of EW gauge bosons

$$
\gamma, Z \backsim \sim \sim \sim \underbrace{Q} \gamma, Z
$$

$$
S=4 \pi N_{D} \lim _{Q^{2} \rightarrow 0} \frac{d}{d Q^{2}} \Pi_{V-A}\left(Q^{2}\right)-\Delta S_{S M}
$$

(Linear+chiral log fits to guide the eye)

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

Direct (but difficult!) probe of electroweak symmetry breaking

Low-energy S-wave " $I=2$ " pseudoscalar scattering on the lattice
\longrightarrow hadronic chiral lagrangian LECs ℓ_{1} and ℓ_{2}
\rightsquigarrow electroweak chiral lagrangian LECs α_{4} and α_{5}

Direct (but difficult!) probe of electroweak symmetry breaking

Importance in Higgs-less LHC scenario

used to be the "no-lose theorem"

$$
\begin{gathered}
p^{2}<M_{d} \rightarrow 0 \\
\stackrel{f^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+M_{s s}^{2}\left[\operatorname{tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)\right]^{2}+\alpha_{4}\left[\operatorname{tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right)\right]^{2}
\end{gathered} p^{2} \ll M_{d s}^{2}, M_{s s}^{2}
$$

Low-energy S-wave " $I=2$ " pseudoscalar scattering on the lattice
\longrightarrow hadronic chiral lagrangian LECs ℓ_{1} and ℓ_{2}
\rightsquigarrow electroweak chiral lagrangian LECs α_{4} and α_{5}

Direct (but difficult!) probe of electroweak symmetry breaking

Low-energy S-wave " $I=2$ " pseudoscalar scattering on the lattice
\longrightarrow hadronic chiral lagrangian LECs ℓ_{1} and ℓ_{2}
\rightsquigarrow electroweak chiral lagrangian LECs α_{4} and α_{5}

WW scattering
For $N_{f}=2, \quad \alpha_{4}+\alpha_{5}=\left(3.34 \pm 0.17_{-0.71}^{+0.08}\right) \times 10^{-3}-\Delta S_{S M}$
(dominant systematic error from chiral fit)
D-wave scattering or form factors needed to separate α_{4} and α_{5}
Unitarity bounds $\alpha_{4}+\alpha_{5} \geq 1.14 \times 10^{-3}$ and $\alpha_{4} \geq 0.65 \times 10^{-3}$ Expected LHC bounds (99% confidence level after $100 / \mathrm{fb}$ at 14 TeV):

$$
-7.7<\alpha_{4} \times 10^{3}<15 \quad-12<\alpha_{5} \times 10^{3}<10
$$

For $N_{f}=6$,
reorganize χ PT in terms of measured M_{P} and F_{P}

Directly compare LECs for $N_{f}=2$ and $N_{f}=6$ $b_{P P}^{\prime} \propto L_{0}+2 L_{1}+2 L_{2}+L_{3}$ $-2 L_{4}-L_{5}+2 L_{6}+L_{8}$
No explicit N_{f}-dependence

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook
adjoint $\mathrm{SU}(2)$ color representation $\mathrm{Nf}=2$ (with fourth family) - phenomenology? phenomenologically viable only if below the conformal window and has large anomalous mass dimension (Sannino MWTC)

The standard model

$S U(2)_{L}$
$S U(3)_{C}$
$S U(2)_{T C}$

adjoint $\mathrm{SU}(2)$ color representation $\mathrm{Nf}=2$ (with fourth family) - phenomenology?

phenomenology can start before conformality is resolved (generic)

from Sannino et al.

Drell-Yen production of composite vector bosons on the TeV scale

Feynman diagram of TeV scale new vector meson production

Dilepton invariant mass distribution $M_{\ell \ell}$ for $p p \rightarrow R_{1,2} \rightarrow \ell^{+} \ell^{-}$signal
$\mathrm{SU}(3)$ sextet color representation $\mathrm{Nf}=2$ (minimal composite Higgs) - phenomenology? phenomenologically viable below the conformal window: has large anomalous mass dimension should be called MWTC

sextet model Goldstone pion in PCAC channel with conformal fit

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

technicolor \& Dark Matter:

- lightest technibaryon can be stable by analog of $U(1)_{B}$
- an initial matter/anti-matter asymmetry gets shared among baryons, leptons, technibaryons via sphalerons
(Chivukula, Barr, Fahri, Nussinov)
- can get observed $\Omega_{D M} / \Omega_{B}$ easily for \sim TeV scale DM must be electrically neutral, EW singlets to avoid direct detection Then leading operators are charge radius and polarizability:

$$
\text { ex.) } \frac{B^{*} B v_{\mu} \partial_{\nu} F^{\mu \nu}}{\Lambda_{T C}^{2}}, \frac{B^{*} B F_{\mu \nu} F^{\mu \nu}}{\Lambda_{T C}^{3}} \quad \text { lattice input? }
$$

EW phase transition in composite Higgs model - early universe

sextet model (Kogut-Sinclair)

Sinclair is USQCD member but project is not using USQCD resources!
potential implications in early cosmology

Outline

- LHC Higgs search and BSM implications focus of USQCD BSM
- Composite Higgs mechanism
- USQCD BSM results of last 12 months
lead role in world-wide effort
- S-parameter (LSD)
- WW scattering (LSD)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Cosmology connection
(dark baryon matter and EW phase transition)
- Outlook

Summary and outlook

- USQCD is playing leadership role in studies of BSM physics on energy frontier
- Searching for candidate composite Higgs models and computing their properties
- Supersymmetric extension SM - susy breaking needs lattice input with ultimate goal to understand soft parameters in MSSM
- Covers two main approaches to understanding EW symmetry breaking at LHC
- Much learned in last 12 months - Hard but making good progress
- Excellent pilot work on S-parameter and WW scattering (important future goal)
- Composite Higgs model realizations: SU(2) adjoint and sextet SU(3)
- Technicolor spectroscopy (important future goal)
- Cosmology connection
(dark baryon matter and EW phase transition)
- USQCD BSM research is important part of our SciDAC-3 plan

backup slides

CMS Higgs search

(from Vivek Sharma)

95% CL limit on $\sigma / \sigma_{S M}$

 Remaining corridor of uncertainty

precision electroweak parameters:

if TeV-scale dynamics is QCD-like, expect S~0.3

or even higher !
what about in a near-conformal theory?

S

$$
S=4 \pi N_{D} \lim _{Q^{2} \rightarrow 0} \frac{d}{d Q^{2}} \Pi_{V-A}\left(Q^{2}\right)-\Delta S_{S M}
$$

