Muon Physics Program (and other μ ideas)

Future Colliders Workshop: Cool Copper Collider R&D

Dylan Rankin [MIT] - May 18th, 2022 (with very helpful and necessary input from Emilio Nanni)

Introduction

- Muons connected to many exciting recent physics results
- Having a (high energy) muon beam opens up many exciting possibilities for physics
- How do we get there? How do we test the technology?
 - What can we do along the way?
- n.b. not a muon collider talk

Physics During C³ Construction

- Between end of demonstration plan and first Higgs there is a 10-12 year gap
 - Ongoing industrialization and construction at site Cryomodules and RF sources are being produced, put in tunnels
- Could a string test be considered to build confidence in the technology, demonstrate operational parameters for additional sub-systems, train up project workforce and deliver physics?

Physics During C³ Construction

- String Test Elements:
 - Positron Source Few GeV electron linac, positron target, positron capture
 - Damping ring?
 - Main linac to 45 GeV ~550-700 m (low to high current), 1 cryo plant

Muon Production with Positrons at 45 GeV

- LEMMA Concept (avoid muon cooling)
- Positron (45 GeV) on fixed low Z target
 - e+e- $\rightarrow \mu^+\mu^-$, muons at 22.5 GeV
- High conversion efficiency and low emittance

Muon Production* with Positrons at 45 GeV for C³

C3 String Test Low Muon Current

Parameter	Value
Number of RF Pulses Per Year (180 days)	1.87 x 10 ⁹
RF Pulse Length	700 ns
# of Muons per RF Cycle	1
Muon Δt (smallest)	175 ps
Muons / Year (Max)	7.46 x 10 ¹²

Includes 10-6 efficiency for e+ conversion

C3 String Test High Muon Current

Parameter	Value
Number of RF Pulses Per Year (180 days)	1.87 x 10 ⁹
RF Pulse Length	700 ns
Positron Bunch Charge	1 nC
# of Bunches per RF Pulse	133
# of Muons per Bunch	6 x 10 ³
# of Muons per RF Pulse	8 x 10 ⁵
Muon Δt (smallest)	5.26 ns
Muons / Year (Max)	1.5 x 10 ¹⁵

^{*}LEMMA Target Singe Pass

Muon Beam Physics

- What physics can be done with this muon beam?
- Muon beam dump
 - Minimal additional infrastructure if beam beam is produced
- Higher energies could allow more tests of muon acceleration
- e-μ collider?

Muon Beam Dump

Muon beam incident on target (Z)

detector

Why a Beam Dump?

Dark matter

Why a Beam Dump?

Dark photon

Why a Beam Dump?

- Weakly coupled scalars
 - eg. U(1)_μ-_τ

Why Muons?

- Many existing beam dump experiments with electrons
- Two main advantages for muons:
 - Preferential new physics couplings to muons
 - g-2, R_K (& R_{K*}, R_D, R_{D*})
 - Higher beam energies
 - Different scenarios (mass, lifetime)

Muon Missing Momentum (M³)

- 15 GeV muon beam
- Phase 1: 10¹⁰ muons on target (MOT), probe large part of (g-2)_μ region
- Phase 2: 10¹³ MOT, thermal muon-philic DM search

High-Energy Muon Beam Dump

- Envisioned for 3 TeV muon collider (1.5 TeV μ)
- 10¹⁸ 10²² MOT

M³ (Phase 1)

- Fermilab Main Injector beamline provides proton beam of 120 GeV with an RF frequency of 53 MHz
 - 4.2 s spills
 - Final expected rate is 10⁵ muons per spill
- 10–30 GeV muon beam
 - Transverse beam size is roughly a few centimeters in x and y
- The time between spills is approximately one minute
- Over one week of continuous running, this sums to approximately 10⁹ MOT
 - 2.5 x 10¹⁰ MOT / yr

C3 String Test Low Muon Current

Parameter	Value
Number of RF Pulses Per Year (180 days)	1.87 x 10 ⁹
RF Pulse Length	700 ns
# of Muons per RF Cycle	1
Muon t (smallest)	175 ps
Muons / Year (Max)	7.46 x 10 ¹²

M³ (Phase 2+)

- Phase 2 requires upgrades to accelerator (beamline), detector (trigger)
 - 10⁷ muons per spill
- 2.5 x 10¹² MOT / yr

C3 String Test High Muon Current

Parameter	Value
Number of RF Pulses Per Year (180 days)	1.87 x 10 ⁹
RF Pulse Length	700 ns
Positron Bunch Charge	1 nC
# of Bunches per RF Pulse	133
# of Muons per Bunch	6 x 10 ³
# of Muons per RF Pulse	8 x 10 ⁵
Muon t (smallest)	5.26 ns
Muons / Year (Max)	1.5 x 10 ¹⁵

M³ (Phase 2 +)

- 10¹⁵ MOT from C³ gets to irreducible background floor for M³
- Nice place to be
 - Increase in MOT would not improve limits significantly

High-Energy Muon Beam Dump

- What is gained from increasing muon energy?
- From physics perspective, adjust the probed parameter space
 - e.g. for DM, increased $E_{\mu} \rightarrow$ increased m_{med}
 - 500 GeV beam → 20 GeV m_{med}
 - 50 GeV beam → 5 GeV m_{med}
- What else could be done?

Just one idea: e-µ Collider

- Would have muons in C³ complex, could you use them for collisions?
- e-μ collider
 - t-channel, very low backgrounds
 - LFV (H, Z)? Leptoquarks?

Conclusions

- C³ construction period lasts 10 years
- Simultaneous tests could have many benefits
 - Test the technology, demonstrate operational parameters, deliver physics?
- Muon beam dumps are a very attractive idea for this
 - Minimal additional infrastructure
 - Strong test of muon production
 - Rough numbers for C³ are in the ballpark (or better) than what would be needed
- Should explore other ideas too
 - e-μ? Low energy muon collider?
 - Also not dependent on muons: e+/e- beam dump?

BACKUP

Muon Collider

- Muon collider provides ability to probe/ discover range of physics
 - Generic BSM modifications
 - Dark matter
 - Heavy scalars
 - Composite/Twin Higgs
- Complementarity in many cases

Muon Missing Momentum (M³)

High-Energy Muon Beam Dump

