Proton Inelastic Cross-section Analysis: Energy Reconstruction

Heng-Ye Liao Hadron Analysis Meeting April 21, 2022

Outline

Proton kinetic energy calculation

Energy Reconstruction

KE at TPC front-face is critical when using Beth-Bloch-based energy reconstruction (<u>link</u>)

- → We are able to measure KE_{ff} precisely for elastic-scattering protons*, but NOT for inelastic-scattering protons.
- Decide to use calorimetric-based energy calculation with constant Eloss assumption:

$$KE_{reco} = KE_{beam} - \langle \Delta E \rangle - \sum_{\substack{j \\ \text{Upstream} \\ \text{E-loss}}} \frac{dE_j}{dx_j} dx_j$$

Calorimetric reco (Not using the Bethe-Bloch formula)

- Upstream E-loss determination:
 - \rightarrow Tune < Δ E> s.t. low energy elastic-scattering peak at 0 MeV

μ: Mean of Gaussian extracted from the fit

Data/MC Comparison

Good to see low energy peak at zero MeV (as expected)
 Data/MC discrepancies observed

Data/MC Comparison after KE Reweighting

►KE reweight using $KE_{ff} \rightarrow Improve data/MC$ agreement on KE_{ff}

Data/MC discrepancy at low KE still exist after reweighting

 $\rightarrow\,$ Implication that the issue may not be related to beam momentum/energy

Fix the energy estimation using calorimetric-based energy reconstruction
 with constant E-loss assumption

<u>Next</u>

Data-driven background measurement using E-slice method
 Unblinding

Backup:

Other studies to improve energy estimation using Bethe-Bloch formula

Algorithm to Improve KE_{ff} of Elastic-scattering Protons

For elastic-scattering protons, KE_{ff} estimation is critical, const. E-loss assumption can be improved \rightarrow Use KE_{ff} =Length2E(range)

Algorithm to Improve KE_{ff} of Elastic-scattering Protons

► Range-based KE_# estimation works well

- ► Use **dE/dx & residual range** to predict **r**₀
 - r_o: Distance between interaction vertex and the point for Bragg peak
 - r: Residual range of interacting protons

R₀ Calculations

KE_{ff} (truth)=378.7 MeV, r₀ (truth)=42.6 cm
KE_{ff}(reco)=Length2E(r₀+range(reco))
r₀ calculations:
[1] <r₀>=33.4 cm (low pass filter to remove outliers) → KE_{ff}(reco)=347.0 MeV
[2] <r₀>=39.5 cm (all hits) → KE_{ff}(reco)=372.3 MeV
[3] r₀=25.1 cm (last hit, track end) → KE_{ff}(reco)=318.7 MeV

> *<u>https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter</u> SG(window size, poly. order)

KE_{ff} of Inelastic-scattering Protons: Precise KE_{ff}

Sanity check to see if the idea works $\rightarrow KE_{ff}(reco)=Length2E(CSDA(KE_{ff}(truth)))$

Algorithm to Improve KE_{ff} of Inelastic-scattering Protons

▶ Const. E-loss assumption is still the best assumption

KE_{end}: Elastic-Scattering Protons

- Great energy reconstruction for elastic scattering protons using ranged-based energy calculation (Bethe-Bolch)
- ▶ Best KE_{ff} calculation: KE_{ff} =Length2(E)

KE_{end}: Inelastic-Scattering Protons

Good energy reconstruction for inelastic scattering protons using ranged-based energy calculation (Bethe-Bolch)

 $KE_{ff} = KE_{beam} - \langle \Delta E \rangle$

KE_{end}: **Reco. Inelastic-scattering Protons**

Proton KE after event selection of inelastic-scattering protons

KE_{end}: **Reco. Elastic-scattering Protons**

Proton KE after event selection of elastic-scattering protons

