First look at the angular distributions at the photosensor plane of ND-GAr

Goal

Characterization of the angular distributions at the photosensor plane of the ND-GAr TPC, to consider the use of light concentrators (e.g. Winston cones) to maximize the collection efficiency while reducing the area covered by SiPM (therefore reducing also the optical noise).

Outlook

- GEANT4 framework
- Collection efficiency vs source position
- Angular distribution at the photosensor plane vs source position

GEANT4 framework

Primary particles: optical photons (interact with surface materials) $\lambda = 650 \text{ nm}$ (CF4 emission)

isotropic emission

Collection efficiency as a function of source position (z_{source}, R_{source})

Observations:

- For $R_{teflon} = 0\%$ only direct light is collected while for $R_{teflon} = 95\%$ direct + reflected light is collected.
- Collection efficiency decays with z_{source} , as solid angle decreases. For $R_{teflon} = 95\%$ decay is flatter due to contribution of reflected light.
- For a given $z_{source} \rightarrow$ collection efficiency with R_{source} constant within few % (except for $R_{teflon} = 0\%$ and $z_{source} < 2000$ mm)

Angular distribution at the photosensor plane

Angular distribution at the photosensor plane

Angular distribution at the photosensor plane: contribution from reflected light

Observations:

- Reflected light on top-right region
- \rightarrow for large R_{cath} (i.e. closer to reflective surface of drift wall) all incident angles are possible
- \rightarrow for small R_{cath} only large incident angles
- Intuitively, if we would implement an anode with $R_{anode} \neq 0$, reflected light would extend to bottom-left region

Angular distribution at the cathode: contribution from reflected light

Angular distribution at the photosensor plane

As we had previously seen that for a given z_{source} the collection efficiency with R_{source} is constant within few % and the angular distribution of the reflected light is similar for all source points \rightarrow we study a source distributed homogeneously over a disk for different z positions

For R_{teflon} = 0% (only direct light)

Distribution in $\cos(\theta)$

For R_{teflon} = 95% (direct + reflected light)

Distribution in $\cos(heta)$

Observations:

- Small z_{source} values: almost homogeneous distribution in $cos(\theta) \rightarrow difficult$ to collect in Winston cones
- Large z_{source} values: narrower distribution of incident photons \rightarrow a light concentrator could be used to reduce the area covered by SiPM (therefore reducing also the optical noise).
- → This (a priori intuitive) result could had been anticipated for direct light but was not obvious in the presence of reflected light. However, multiple reflections also cause a bias towards tracks close to the vertical, and the effect becomes dominant far from the cathode (where direct light is small). Only about half of the solid angle (compared to the isotropic) is filled, that gives some hope for a factor ~2 reduction of the SiPM area (if considering only Liouville theorem).
- Similar distributions with R_{cath} → Winston cones of the same geometry for the full readout plane?.
 Identical Fresnel lenses at the windows?.
- Optimizing for far distances is interesting, as losing light for close distances is less problematic (more uniform response??).
- Next: evaluate the impact of a Winston cone with simple arguments. Consider a reflective aluminumbased GEM at the anode.

Extra slides

Collection efficiency as a function of source position (z_{source}, R_{source})

Collection efficiency as a function of source position (z_{source}, R_{source})

Reflectivity teflon = nominal

Angular distribution at the cathode: contribution from reflected light

