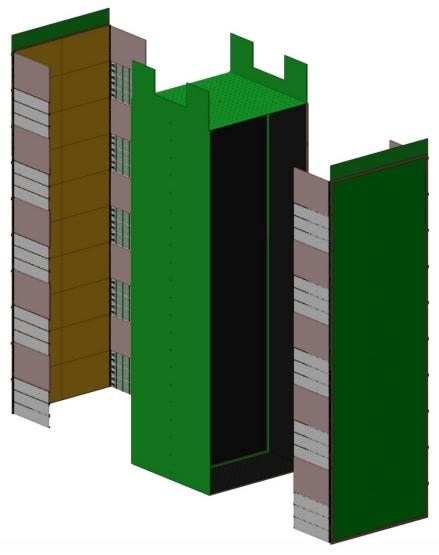


ArgonCube2x2: Rack Builds Progress

Karolina Wresilo

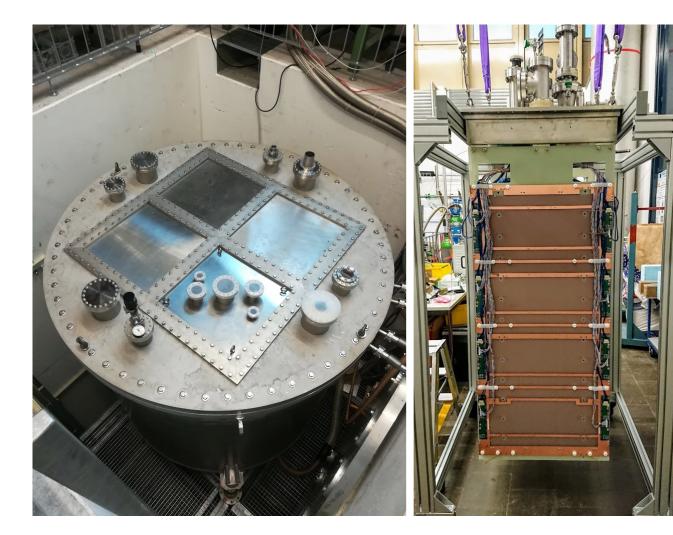
2x2 Electronics Integration Meeting 11th May 2022


Outline

- Introduction
 - ND-LAr ArgonCube
 - ArgonCube 2x2
- Rack builds:
 - The team
 - Safety reviews
 - Subsystems
- Plans and schedule

ND LAr: ArgonCube

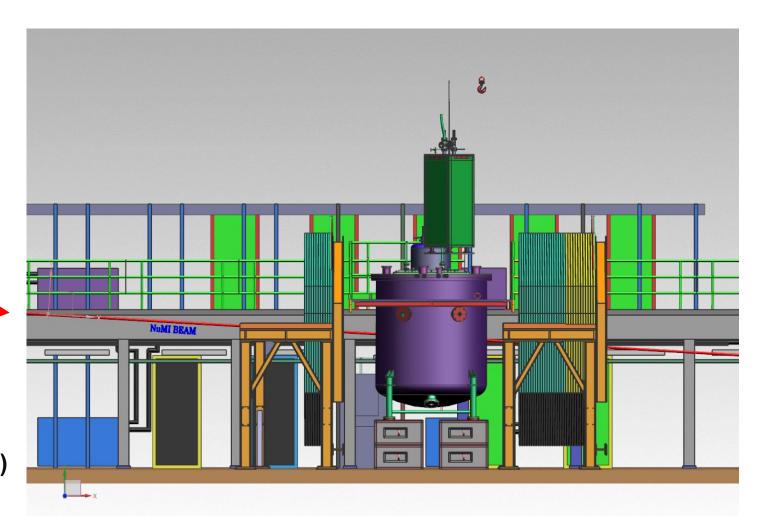
- High-intensity 1.2 MW beam will deliver 55 neutrino interactions per beam spill at the DUNE near-detector (ND) site.
- The expected **event pile up** would lead to ambiguous and/or unresolvable final states.
- To combat this a modular approach is taken (ArgonCube concept):
 - ND-LAr will consist of 35 optically isolated TPC modules.
 - Each module has a cathode in the middle and two anode read-out planes on either side.



Full sizes modules will be 1.0 x 1.0 x 3.5m

ArgonCube Prototyping: 2x2 Module

- Prototype consisting of four 0.7 x 0.7 x 1.4m TPC modules, contained within a common cryostat.
- Essential for confirming the functionality of the modular approach.



Detector Layout

- Eventual goal: test beam in the MINOS underground facility.
- Designed based on the space available in the MINOS hall.

- In the image:
 - Cryostat (purple)
 - TPC module (dark green)
 - Electronic racks (light green)

Rack Builds: Team

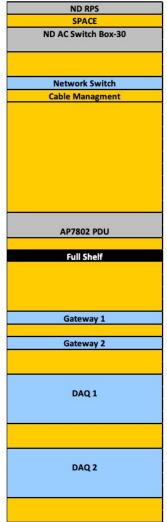
A number of Fermilab staff members:

- Ting Miao (project manager for ArgonCube installation and testing)
- Linda Bagby (...)
- Geoffrey Savage (Neutrino Division Operations Support)
- and support from engineers and technicians

PhD students:

- Jingyuan Shi
- Norman Matrinez
- Alexandra Moor
- Rowan Zaki
- Karolina Wresilo

Rack Builds: Subsystems


- 4 main subsystems:
 - 1. Charge read-out
 - 2. Light read-out
 - 3. Drift HV
 - 4. Purity Monitor
- 4 main racks
 - 1. HV (High-Voltage)/Light VGA (Variable Gain Amplifier) rack: Jingyuan Shi
 - 2. Light ADC (Analog to Digital Converter) rack: myself
 - 3. PS (Power Supply) rack: Rowan Zaki and Norman Martinez
 - 4. PM (Purity Monitor) rack: Alexandra Moor

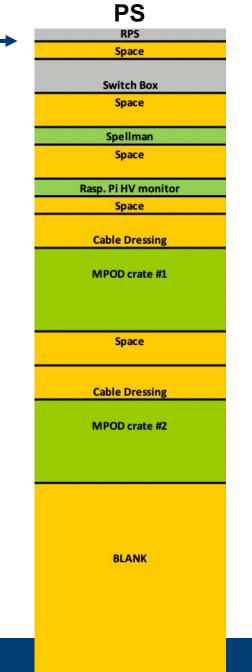
- Several non-NRTL (Nationally Recognised Testing Laboratory) equipment is utilised (custom designs)
- Before powering on:
 - ORC is required due to the use of custom design electrical equipment.
 - SEDR is used to determine whether the custom design follows Fermilab Engineering Design Standard based on National Electrical Code and best engineering practices.


- During the rack build design and assembly, we:
 - Follow a system block diagram scheme to ensure adequate cooling of the equipment and accommodation for cable dressing.

- During the rack build design and assembly, we:
 - Follow a system block diagram scheme to ensure adequate cooling of the equipment and accommodation for cable dressing.
 - Construct tables used to determine **AC current requirements**.

# of racks	Location	Server Rack										
		Rack Name	Rack Components	Network	Voltage (V)	Current (A)	Power (VA)	Space (U)	120V/15A	120V/20A	120V/30A	
1	Under catwalk	Server	ND RPS		120	1	120	1	1			
			Space					1				
			Switch Box-30					2				
			Space					4				
			network switch		120	5	600	1	1			
			cable management					1				
			space					6				
			gateway computer	2	120	2	240	1	2			
			space					1				
			gateway computer	2	120	2	240	1	2			
			Space					2				
			DAQ computer	2	120	3	360	4	1			
			Space					2				
			DAQ computer	2	120	3	360	4	1			
			Space					2				
		9	Total	8		16	1920	33	8	0	1	

- During the rack build design and assembly, we:
 - Follow a system block diagram scheme to ensure adequate cooling of the equipment and accommodation for cable dressing.
 - Construct tables used to determine AC current requirements.
 - Collect documentation during the rack build to
 - Generate an ORC Request which focuses on AC and DC distributions.
 - Provide resources for collaborators and support staff.

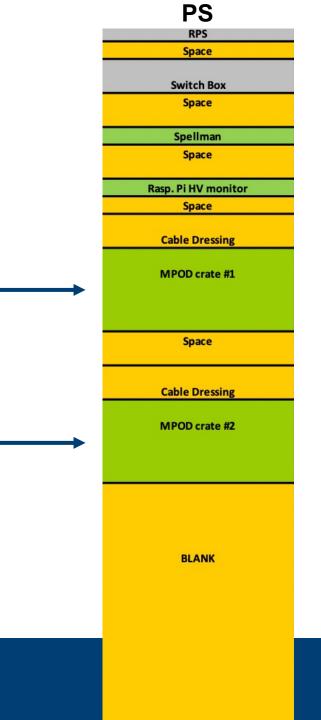

# of racks	Location	Server Rack										
		Rack Name	Rack Components	Network	Voltage (V)	Current (A)	Power (VA)	Space (U)	120V/15A	120V/20A	120V/30A	
1	Under catwalk	Server	ND RPS		120	1	120	1	1			
			Space					1				
			Switch Box-30					2				
			Space					4				
			network switch		120	5	600	1	1			
			cable management					1				
			space					6				
			gateway computer	2	120	2	240	1	2			
			space					1				
2			gateway computer	2	120	2	240	1	2			
			Space					2				
		j.	DAQ computer	2	120	3	360	4	1			
			Space					2				
			DAQ computer	2	120	3	360	4	1			
			Space					2				
		6	Total	8		16	1920	33	8	0	1	

Rack Builds: Common Features


- A number of common features between the racks:
 - 1. RPS (Rack protection system)
 - protects the electronics in the rack by shutting down the powers when there is a smoke (fire) in the rack.

Rack Builds: Common Features

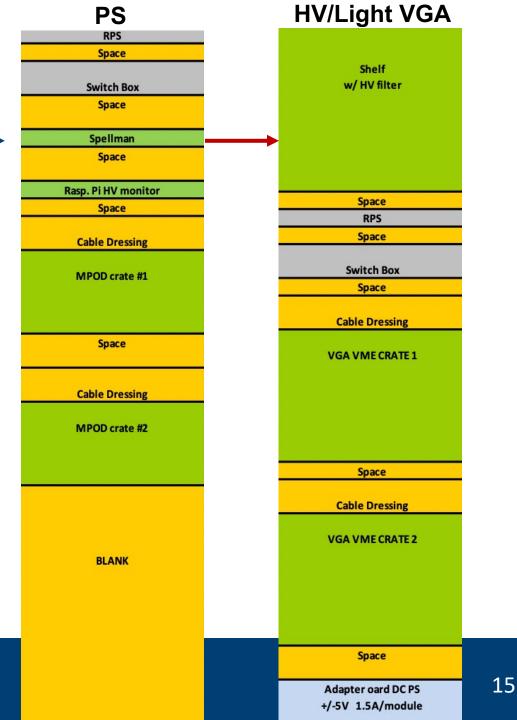
- A number of common features between the racks:
 - 1. RPS (Rack protection system)
 - protects the electronics in the rack by shutting down the powers when there is a smoke (fire) in the rack.
 - 2. Switch Box
 - provides controlled and safe way to supply AC power to electronics inside the rack.



Rack Builds Subsystems: Charge Readout (Rowan and Norman)

- The TPC has a pixelated anode with pixels instrumented by ASICs.
- 2 PACMAN per TPC mounted on top of the feed through to provide data **input/output**.
- Currently, the charge readout system QA/QC for module-0 performed using bench top power supply :
 - the setup will be replaced with MPOD MPV modules in the DC PS rack.

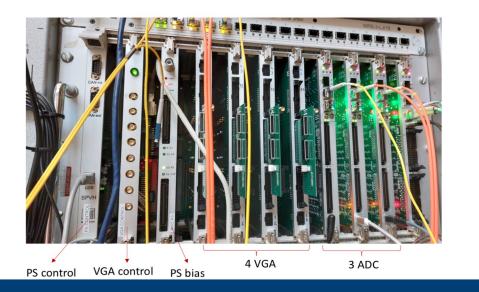
Rack Builds Subsystems – Drift HV (Jingyuan)

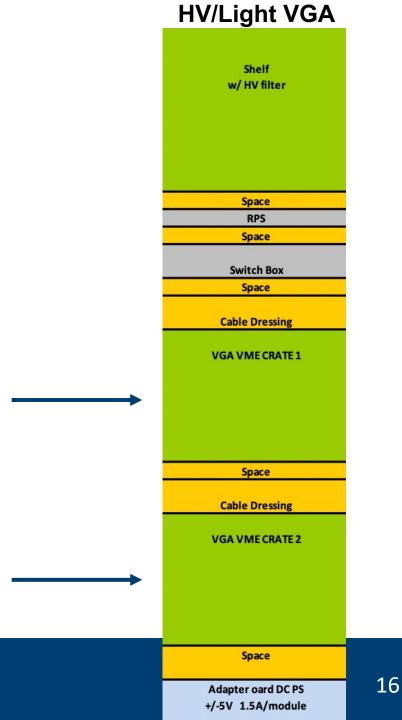

- **Spellman PS** used for powering the high-voltage system.
- The **HV filter** connected to the cathode through the feedthrough on top of the cryostat.

JNIVERSITY OF

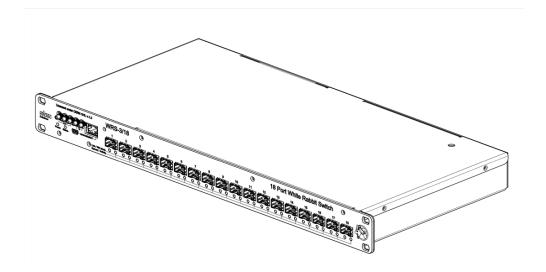
DGE

MBRII




- The location of this rack (lower hall) will reduce the required length of the cables and therefore **minimise the noise.**
- Adapter board at the bottom distributes the signal from feedthrough to VME crates via micro-coaxial cables.
- The signal is sent to the VME crates. These contain:
 - Contain PCB modules with VGAs (x8)
 - DAC PS (x2)
 - Control unit (x1)

NIVERSITY OF

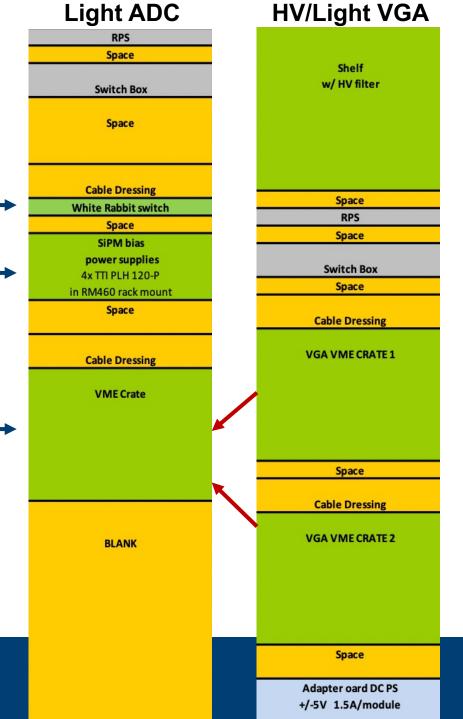

DGE


MBRII

White rabbit switch which will eventually be used for beam clock.

UNIVERSITY OF CAMBRIDGE

- White rabbit switch which will eventually be used for beam clock.
- Power supplies connected directly to adapter boards which distribute the power to the SiPM via coaxial cables.



- White rabbit switch which will eventually be used for beam clock.
- Power supplies connected directly to adapter boards which distribute the power to the SiPM via coaxial cables.
- VGA VME crates (right) connected to VME crate in the Light ADC rack (left). This contains:
 - ADC modules (x8)
 - Trigger unit (x1)

19

Rack Builds Subsystems – Purity Monitor


• Surge-X provides power and serves as a switch box for the rack.

Rack Builds Subsystems – Purity Monitor

- Surge-X provides power and serves as a switch box for the rack.
- Purity monitor situated inside the TPC. Connects to the adapter modules inside the NIM Bin (modified such that is has its own PS).

PM Rack Protection System Space

Surge-X

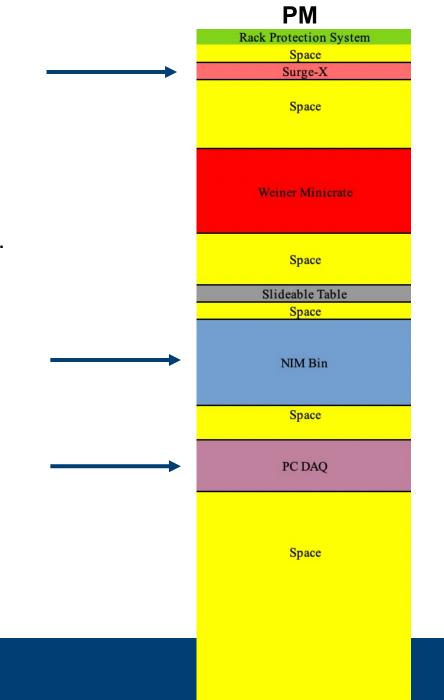
Space

Weiner Minicrate

Space

Slideable Table Space

NIM Bin

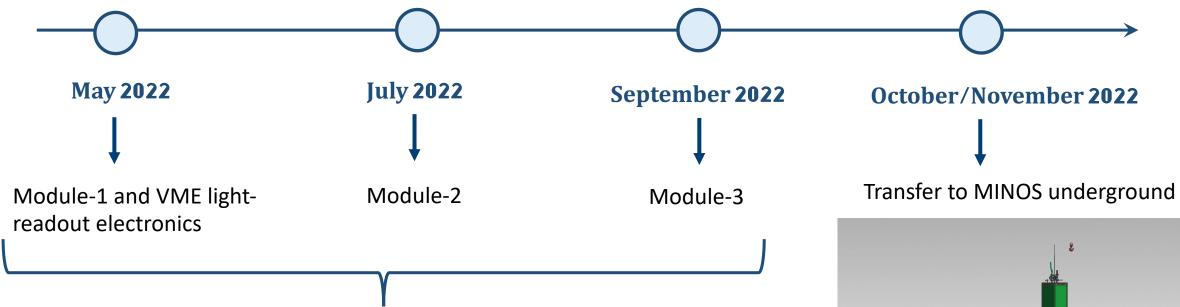

Space

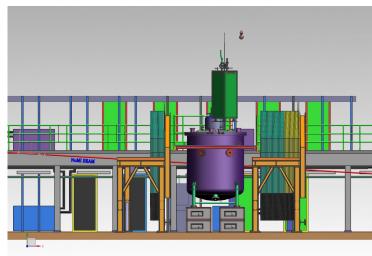
PC DAQ

Space

Rack Builds Subsystems – Purity Monitor

- Surge-X provides power and serves as a switch box for the rack.
- Purity monitor situated inside the TPC. Connects to the adapter modules inside the NIM Bin (modified such that is has its own PS).
- NIM Bin communicates with a bench top computer for DAQ.




PM Rack Protection System Space **Rack Builds Subsystems – Purity Monitor** Surge-X Space Surge-X provides power and serves as a switch box for the rack. ٠ Weiner Minicrate Purity monitor situated inside the cryostat. Connects to the ٠ adapter modules inside the NIM Bin (modified such that is has its Space own PS). Slideable Table Space NIM Bin communicates with a bench top computer for DAQ. ٠ NIM Bin Wiener Minicrate containing: ٠ Control modules. • Space HV module. • PC DAQ Space 1 (, F

23

Plans and Schedule

QA/QC tests to be performed as the modules arrive (warm tests).

Summary

- The long-term goal of the ArgonCube 2x2 module is to confirm the **functionality of the modular approach in beam environment**.
- Rack build designs are finalised. The assembly of them has begun.
- QA/QC of the subsystems will be performed module by module (warm tests).
- All modules set to arrive by the end of September with relocation to the underground facility later this year.

