LBNF Beamline Preliminary Design Review - Neutrino Beam Instrumentation and Beam-based Alignment

Overview, Requirements, ES&H and Interfaces

Jonathan Paley

May 11, 2022

About Me

- Neutrino Division Scientist
- Joined Fermilab in 2015, prior to that I was an associate scientist at ANL
- As a postdoc at Indiana University, I worked on MIPP, MINOS and NOvA
- past few years. Have been focused on neutrino flux and cross sections:
 - 2015-2021: NOvA near detector analysis co-convener, focus on neutrinonucleus cross sections
 - Co-spokesperson of the EMPHATIC collaboration ("table-top" hadron production measurements for neutrino flux predictions)
 - Co-spokesperson of NuSTEC (Neutrino Scattering Theory Experiment Collaboration)
- Cold Electronic L3 position now.

As a scientist at both ANL and Fermilab, I have worked mostly on NOvA until the

• Joined the LBNF Project as the L4 of the NBI in 2018. Transitioning to DUNE FD

NBI is responsible for aligning and monitoring the secondary and teriary beams.

Left Section View of LBNF-20 Target Hall Complex's Target Bunker

Semi-Left Section View of Decay Region Structure and LBNF-30 Absorber Complex

Fermilab

Left Section View of LBNF-30 Absorber Complex

Beam-based Alignment and Monitoring

- Neutrino beam-based alignment is done using:
 - Beam Position Monitors (BPMs, upstream of target, not under our purview) - Hadron Alignment Detector System (HADeS), in front of the absorber, at end of
 - the decay pipe)
 - Horn cross-hairs and beam-loss monitors (BLMs)
- Monitoring of the neutrino beam intensity and direction is done using:
 - Target position thermometer (TPT): if the position of the beam on the target changes w/ no corresponding change in the position on the BPMs, this is could be an indication that the target itself has moved.
 - Muon monitor system (MuMS): track the intensity, beam center and width on a spill-by-spill basis.
 - Horn-leveling system (HLS): independent measurement of the positions of the focusing horns.

Quantity	1-sigma Shift	Notes	In TDR
Horn A Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shifted separately,	Y
		added in quadrature	
Horn A Transverse Tilt	$0.5 \mathrm{mm}$	X and Y shifted separately,	N
		added in quadrature; upstream	
		and downstream ends shifted in	
		different directions	
Horn B Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shifted separately,	Y
		added in quadrature	
Horn B Transverse Tilt	$0.5 \mathrm{mm}$	X and Y shifted separately,	N
		added in quadrature; upstream	
		and downstream ends shifted in	
		different directions	
Horn C Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shifted separately,	N
		added in quadrature	
Horn C Transverse Tilt	$0.5 \mathrm{mm}$	X and Y shifted separately,	N
		added in quadrature; upstream	
		and downstream ends shifted in	
		different directions	
Target Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shifted separately,	N
		added in quadrature	
Target Transverse Tilt	$0.5 \mathrm{mm}$	X and Y shifted separately,	N
		added in quadrature; upstream	
		and downstream ends shifted in	
		different directions	

From <u>dune-docB 19942</u>

- Many of these are tolerances, which are assumed to be a 1-sigma uncertainty.
- Most of the NBI requirements are driven by these uncertainties.
- Some NBI requirements also come from [radiation] safety considerations.

Quantity	1-sigma Shift	No
Horn A Transverse Displacement	0.5 mm	X and Y shift
		added in q
Horn A Transverse Tilt	$0.5 \mathrm{mm}$	X and Y shift
		added in quadra
		and downstream
		different o
Horn B Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shift
		added in c
Horn B Transverse Tilt	$0.5 \mathrm{~mm}$	X and Y shift
		added in quadra
		and downstream
		different o
Horn C Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shift
		added in c
Horn C Transverse Tilt	$0.5 \mathrm{~mm}$	X and Y shift
		added in quadra
		and downstream
		different o
Target Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shift
		added in c
Target Transverse Tilt	$0.5 \mathrm{mm}$	X and Y shift
		added in quadra
		and downstream
		different of
		•

	Horn A Longitudinal Displacement	$2 \mathrm{mm}$	
	Horn B Longitudinal Displacement	$3 \mathrm{~mm}$	
Q	Horn C Longitudinal Displacement	$3 \mathrm{mm}$	
	Proton Beam Transverse Position	$0.5 \mathrm{mm}$	X and Y shift
			added in q
	Proton Beam Radius	10%	Updated from 0.
	Proton angle on target	70μ rad	X and Y shift
			added in q
	Decay Pipe Radius	0.1 m	
	Horn Currents	1%	Changed in a
			simulta
	Baffle Scraping	0.25%	To Be U
	Bafflet Scraping	0.25%	To Be U
	Target Density	2%	
	Horn Water Layer Thickness	$0.5 \mathrm{~mm}$	Changed in a
			simulta
	Upstream Target Degradation		
	# Protons on Target	2%	
	Near Detector Position		
	Far Detector Position		
	Field in Horn Necks		
	Decay Pipe Position	$20 \mathrm{mm}$	

Table 1: Sources of alignment and focusing uncertainties in the neutrino fluxes at DUNE. Sources that were considered in physics studies in the TDR are marked with a 'Y' in the 'In TDR' column.

Horn A Longitudinal Displacement	$2 \mathrm{mm}$		Ν				
Horn B Longitudinal Displacement	$3 \mathrm{mm}$		Ν				
Horn C Longitudinal Displacement	3 mm		Ν				
Proton Beam Transverse Position	0.5 mm	X and Y shifted separately;	Y				
		added in quadrature					
Proton Beam Radius	10%	Updated from 0.1 mm for NuMI	Y				
Proton angle on target	70μ rad	X and Y shifted separately;	Y				
		added in quadrature					
Needay Ribe Value U a	require	ements of each		tem v	VIII D	e qive	
Horn Currents	1%	Changed in all three horns	Y				
the uncomina	talks	simultaneously					
Balile Scraping		To Be Updated	Ν				
Bafflet Scraping	0.25%	To Be Updated	Ν				
Target Density	2%		Υ				
Horn Water Layer Thickness	0.5 mm	Changed in all three horns	Y				
		simultaneously					
Upstream Target Degradation			Ν				
# Protons on Target	2%		Υ				
Near Detector Position			Ν				
Far Detector Position			Ν				
Field in Horn Necks			Ν				
Decay Pipe Position	20 mm		Ν				

Table 1: Sources of alignment and focusing uncertainties in the neutrino fluxes at DUNE. Sources that were considered in physics studies in the TDR are marked with a 'Y' in the 'In TDR' column.

12 Jonathan Paley - Neutrino Division, Fermilab

Jonathan Paley - Neutrino Division, Fermilab 13

Step 1: Establish Beam Direction

- With no horns and/or only horns B&C installed, use beam scan across the face of the HADeS to determine beam direction.
- More on this in Jon's talk.

Step 2: Downstream Horn Alignment

- Use X-Hairs + BLMs on the upstream and downstream end of horns B&C to determine position of the horns.
- More on this in Zarko's talk.

Fin for beam horz. alignment

Nub for beam vert. align

Beam loss mon. to detect beam scatter from fin ("cross-hair")

Step 3: Target and Horn A Alignment

- Baffle protects target utilities and horn from mis-steered beam. Bafflette protects the decay pipe windows and absorber.
- Use both baffle and bafflette for alignment with a beam scan across and look for change in signal in the HADeS.

Step 3: Target and Horn A Alignment

Jonathan Paley - Neutrino Division, Fermilab 18

Target Position Thermometer

Thermocouples attached to ends of 3x3 array of beryllium rods serves as online Beam **Position Monitor**

Existing NuMI design

More on this in Zarko's talk

Horn Leveling System (HLS)

The sensors in red will be at the same height as the ones on the stand above horn modules. Run 4 Invar rods from Target Hall floor level inside battlement to the level of stand for each of sensors

Location	Invar Rod Counts	LVDT Counts	Thermo couple counts	Invar Rod length
Horn C	4	4	4	18ft
Horn B	4	4	4	14ft
Horn A	4	4	4	13ft
Baffle	4	4	Х	12ft

More on this in Sudeshna's talk

Muon Monitor System (MuMS)

ES&H

- All NBI activities follow the Fermilab Environmental Safety and Health Manual, https://eshq.fnal.gov/manuals/feshm/
- Unique considerations:
 - HLS laser
 - Possible ODH in the MuMS detector room (unlikely, but we will do the calculation)

Interfaces

- NBI interface with quite a few other systems:
 - Targetry & Baffle (TPT, X-Hairs, HLS)
 - Absorber (HADeS)
 - Target Hall Shield Pile (HLS, X-Hairs)
 - Remote Handling (HADeS)
 - MARS Modeling (MuMS)
 - Controls (MuMS)
 - Alignment (TPT, X-Hairs, HADeS, MuMS)
 - Installation Coordination (all)
 - Conventional Facilities (all)
 - Cable Coordination (all)
- LBNF Beamline Interface Matrix spreadsheet that includes interface control documents
- the spreadsheet)
- Installation and alignment discussions have not happened yet

• Green interfaces indicate that discussions are well under way (but in many cases undocumented in

Interface Control Documents

	●				
H	lome Insert Dra	aw Page Layout	Formulas Data Rev	view View Developer	
	Cut Copy ~ Paste Sormat	Arial ✓ B I <u>U</u> ✓	11 • A^ A ≡ 	≡ ⊒ ॐ ▾ ఊ ∾ ≡ ≡ ☲ ≖ м	
A	1 🔹 🗶 🗸	$f_{\mathcal{X}}$ LBNF BEAMLINE In	nterface Control Document	- THSP to NBI Interface	
	А	В	с	DE	
1	LBNF BEAMLINE Interfa	ce Control Document - TH	SP to NBI Interface		
2	Native ICD #	100.470		Instructions	
3	Matrix ICD #:	100 172			
5					
6		This document defines the between the following two	e physical interfaces o entities:		
7	L4 Subproject	TH Shield pile	Neutrino Beam Instrumentation		
8	L4 Manager	Joseph Angelo	Jon Paley		
9	L3 Manager	Keith Gollwitzer	Mandy Rominsky		
10					
11	Prepared By:	Checked By:	Approved By:	Date Approved:	
12		B			
13	L4	Proj Mechanical Eng.	LZ	<insert date=""></insert>	
14	14	Proj Electrical Eng	Sinsert Name>		
16	Jon Paley	<insert name=""></insert>			
17		L3 Managers			
18		cincart Name>			
-		Sinsert Name>			
19		System Int. Managers			
19 20		System Int. Managers <insert name=""></insert>			
19 20 21		System Int. Managers <insert name=""></insert>			

 The ICD defines the boundaries (who is responsible for what) and points to specs and parameter docs.

Fermilab

Nor	rmal 2	Percent 2
Ne	utral	Calculation
NC	ucrai	carculation
1	N	0
tion		
_		
_		
-		
-		
	155	ICD 156
	100	

🔊 Beamline Int