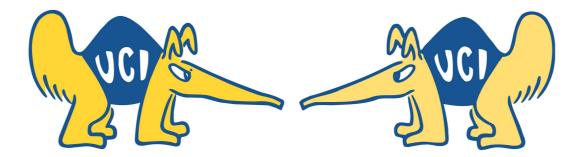


Flavor Symmetries for Neutrino Mixing

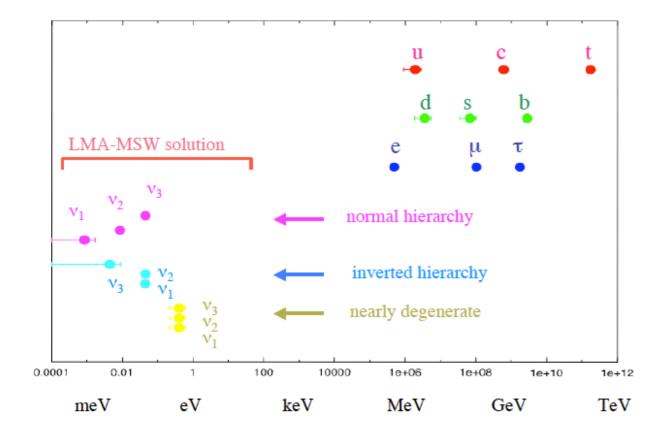
Mu-Chun Chen, University of California at Irvine



Neutrino Theory Network, Fermilab, June 22, 2022

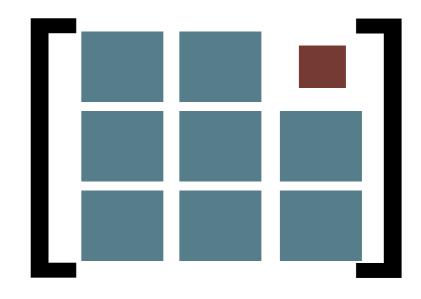
Open Questions – Theoretical

Smallness of neutrino mass:

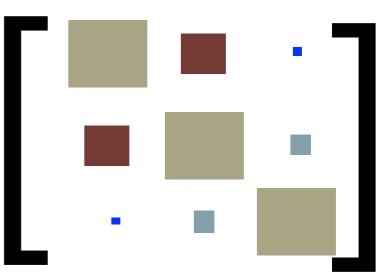


 $m_V \ll m_{e, u, d}$

Fermion mass and hierarchy problem → Dominant fraction (22 out of 28) of free parameters in SM Flavor structure:

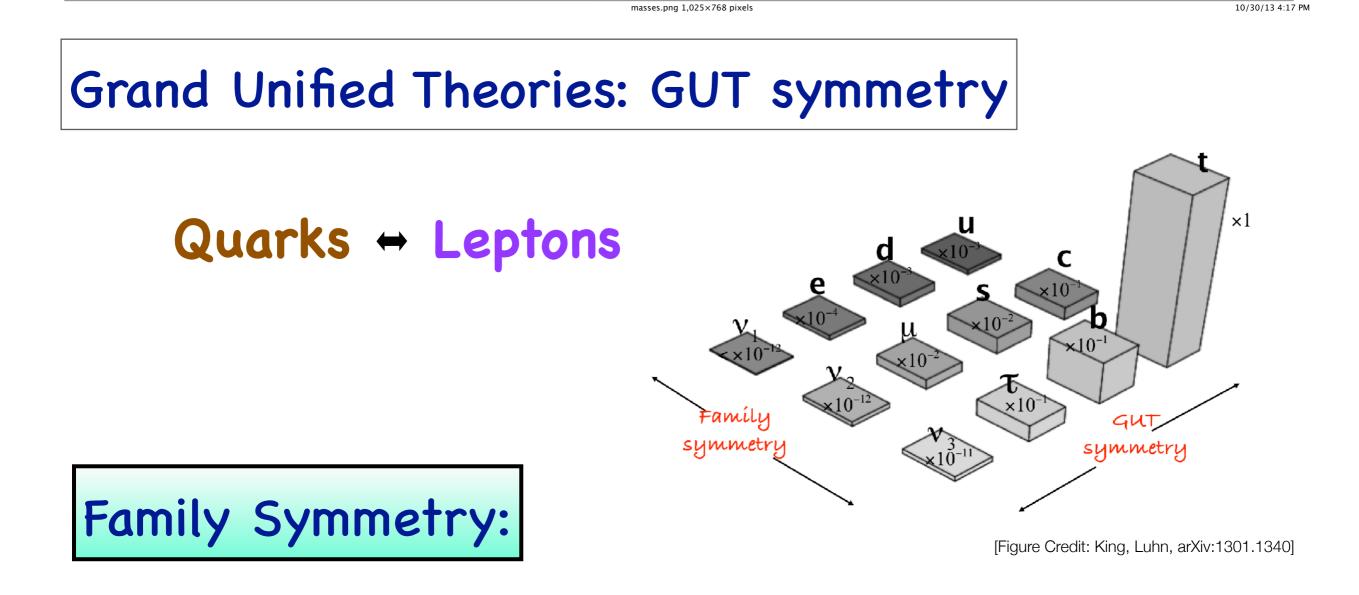


leptonic mixing



quark mixing

Flavor Structure from Symmetries



e-family + muon-family + tau-family

Symmetry Relations

Symmetry \Rightarrow relations among parameters \Rightarrow reduction in number of fundamental parameters

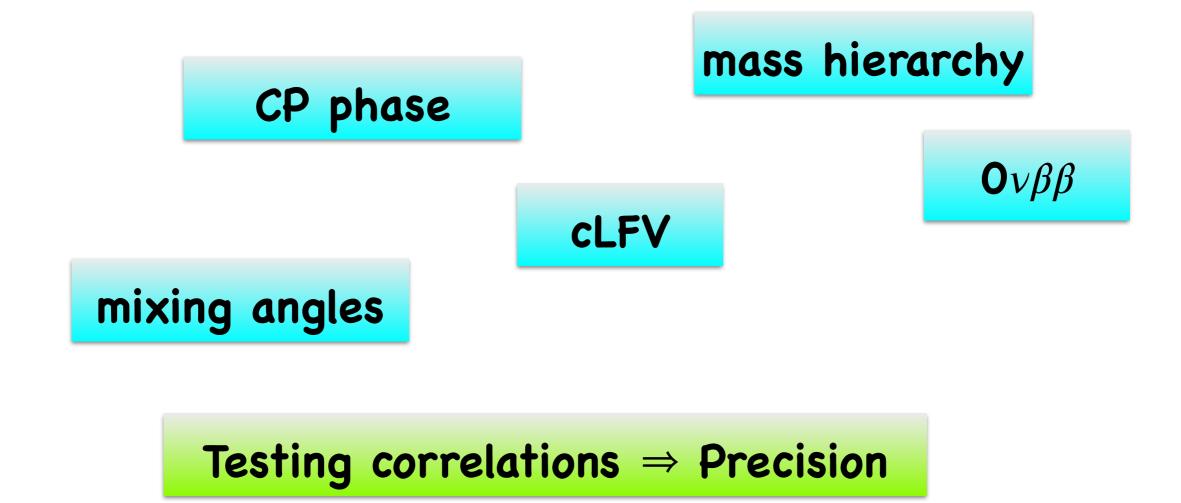
Symmetry Relations

Symmetry \Rightarrow relations among parameters \Rightarrow reduction in number of fundamental parameters

Symmetry \Rightarrow experimentally testable correlations among physical observables

Testing Symmetry Relations \Rightarrow Precision

Symmetry ⇒ experimentally testable correlations among physical observables

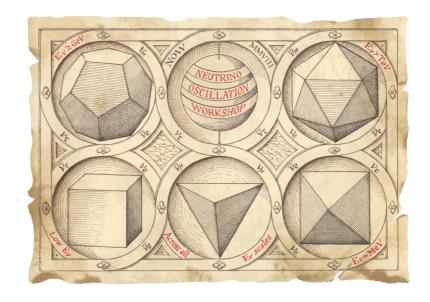


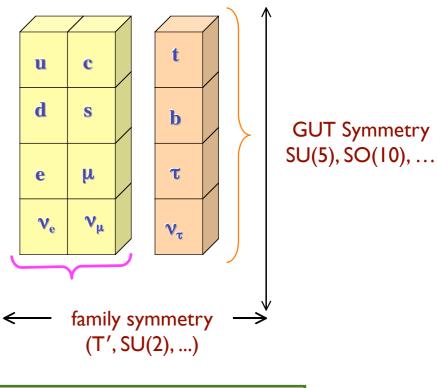
Why Should We Care?

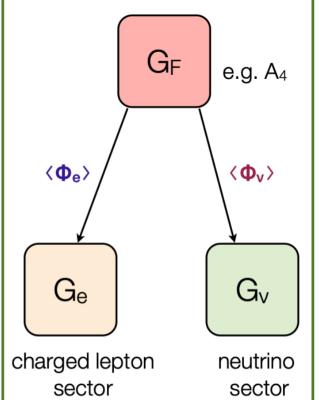
- Understanding a wealth of data, fundamentally
- SM flavor sector: no understanding of significant fraction of SM parameters; (c.f. SM gauge sector)
- Neutrinos as window into BSM physics
 - neutrino mass generation unknown (suppression mechanism, scale)
 - Uniqueness of neutrino masses -> connections w/ NP frameworks
- Neutrinos affords opportunities for new explorations
 - New Tools
 - May address other puzzles in particle physics
 - Window into early Universe
 - UV connection

Non-Abelian Discrete Flavor Symmetries

- Large neutrino mixing motivates discrete flavor symmetries
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - **\$**27
 - Q6
 -







Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)

 $\sin^2 \theta_{23} = 0.437 \ (0.374 - 0.626)$

 $\sin^2 \theta_{12} = 0.308 \ (0.259 - 0.359)$

 $[\Theta^{lep}_{23} \sim 49.2^{\circ}]$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

 $[\Theta^{lep}_{12} \sim 33.4^{\circ}]$

 $\sin^2 \theta_{13} = 0.0234 \ (0.0176 - 0.0295)$

$$[\Theta^{lep}_{13} \sim 8.57^{\circ}]$$

Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

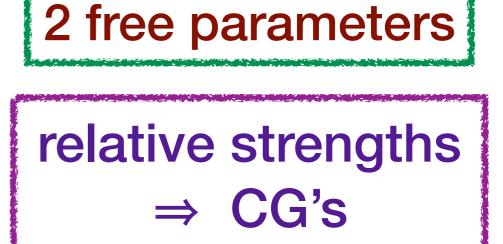
 $\sin^2 \theta_{\text{atm, TBM}} = 1/2 \qquad \sin^2 \theta_{\odot,\text{TBM}} = 1/3$ $\sin \theta_{13,\text{TBM}} = 0.$

Neutrino Mass Matrix from A4

- Imposing A4 flavor symmetry on the Lagrangian
- A4 spontaneously broken by flavon fields

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix}$$

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); Altarelli, Feruglio (2005)



 always diagonalized by TBM matrix, independent of the two free parameters

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Neutrino Mixing Angles from Group Theory

Novel Origin of CP Violation

• CP violation \Leftrightarrow complex mass matrices

 $\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathfrak{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$

- Conventionally, CPV arises in two ways:
 - Explicit CP violation: complex Yukawa coupling constants Y
 - Spontaneous CP violation: complex scalar VEVs <h>
- Complex CG coefficients in certain discrete groups \Rightarrow explicit CP violation
 - CPV in quark and lepton sectors purely from complex CG coefficients M.-C.C., K.T. Mahanthappa, Phys. Lett. B681, 444 (2009)

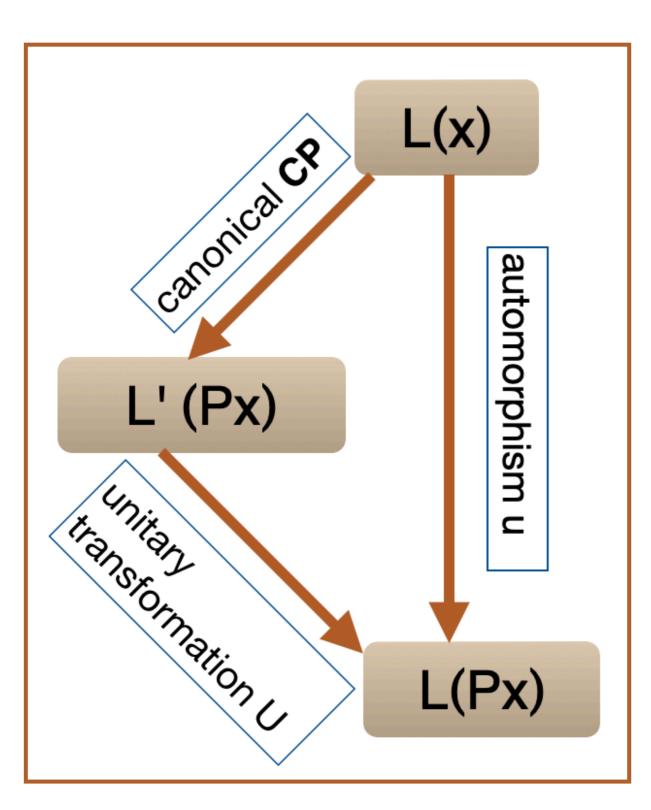
CG coefficients in non-Abelian discrete symmetries relative strengths and phases in entries of Yukawa matrices mixing angles and phases (and mass hierarchy) e_{R}

Υ

 $\langle h \rangle$

 e_L

Group Theoretical Origin of CP Violation



M-CC, Mahanthappa (2009); M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

complex CGs ⇒ G and physical CP transformations do not always commute

Class-inverting outer automorphism

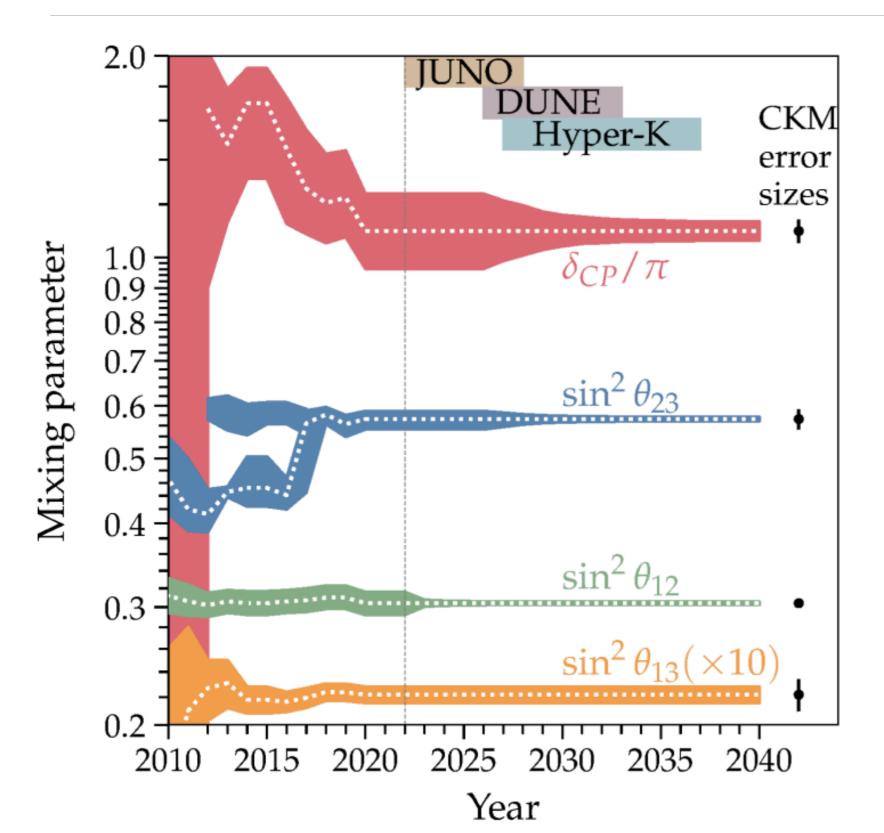
Novel Origin of CP Violation

M-CC, Mahanthappa (2009); M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

complex CGs I CP symmetry cannot be defined for certain groups

CP Violation from Group Theory!

Experimental Precision



Are precision in model predictions compatible with experimental precision?

Figure from Song, Li, Argüelles, Bustamante, Vincent (2020)

Corrections to Kinetic Terms

- Corrections to the kinetic terms induced by family symmetry breaking generically are present, should be properly included
 Leurer, Nir, Seiberg (1993); Dudas, Pokorski, Savoy (1995); Dreiner, Thomeier (2003)
 - can be along different directions than RG corrections
 - dominate over RG corrections (no loop suppression, copious heavy states)
 - only subdominant for quark flavor models
 - could be sizable for neutrino mass models based on discrete family symmetries, e.g. A₄ M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)
 - nontrivial flavor structure can be induced
 - non-zero CP phase can be induced
 - Presence of additional undetermined parameters

Kähler Corrections

M.-C.C., Fallbacher, Ratz, Staudt (2012)

• Superpotential: holomorphic

$$\mathscr{W}_{\text{leading}} = \frac{1}{\Lambda} (\Phi_e)_{gf} L^g R^f H_d + \frac{1}{\Lambda \Lambda_\nu} (\Phi_\nu)_{gf} L^g H_u L^f H_u$$

$$\longrightarrow \mathscr{W}_{\text{eff}} = (Y_e)_{gf} L^g R^f H_d + \frac{1}{4} \kappa_{gf} L^g H_u L^f H_u$$

order parameter <flavon vev> / Λ ~ θc

• Kähler potential: non-holomorphic

$$K = K_{\text{canonical}} + \Delta K$$

• Canonical Kähler potential

$$K_{\text{canonical}} \supset (L^f)^{\dagger} \delta_{fg} L^g + (R^f)^{\dagger} \delta_{fg} R^g$$

• Correction

$$\Delta K = \left(L^f\right)^{\dagger} \left(\Delta K_L\right)_{fg} L^g + \left(R^f\right)^{\dagger} \left(\Delta K_R\right)_{fg} R^g$$

- can be induced by flavon VEVs
- important for order parameter $\sim \theta c$
- can lead to non-trivial mixing

Kähler Corrections

M.-C.C., Fallbacher, Ratz, Staudt (2012)

• Consider infinitesimal change, x :

$$K = K_{\text{canonical}} + \Delta K = L^{\dagger} (1 - 2x P) L$$

• rotate to canonically normalized L':

$$L \rightarrow L' = (1 - x P) L$$

 \Rightarrow corrections to neutrino mass matrix

$$\mathcal{W}_{\nu} = \frac{1}{2} (L \cdot H_{u})^{T} \kappa_{\nu} (L \cdot H_{u})$$

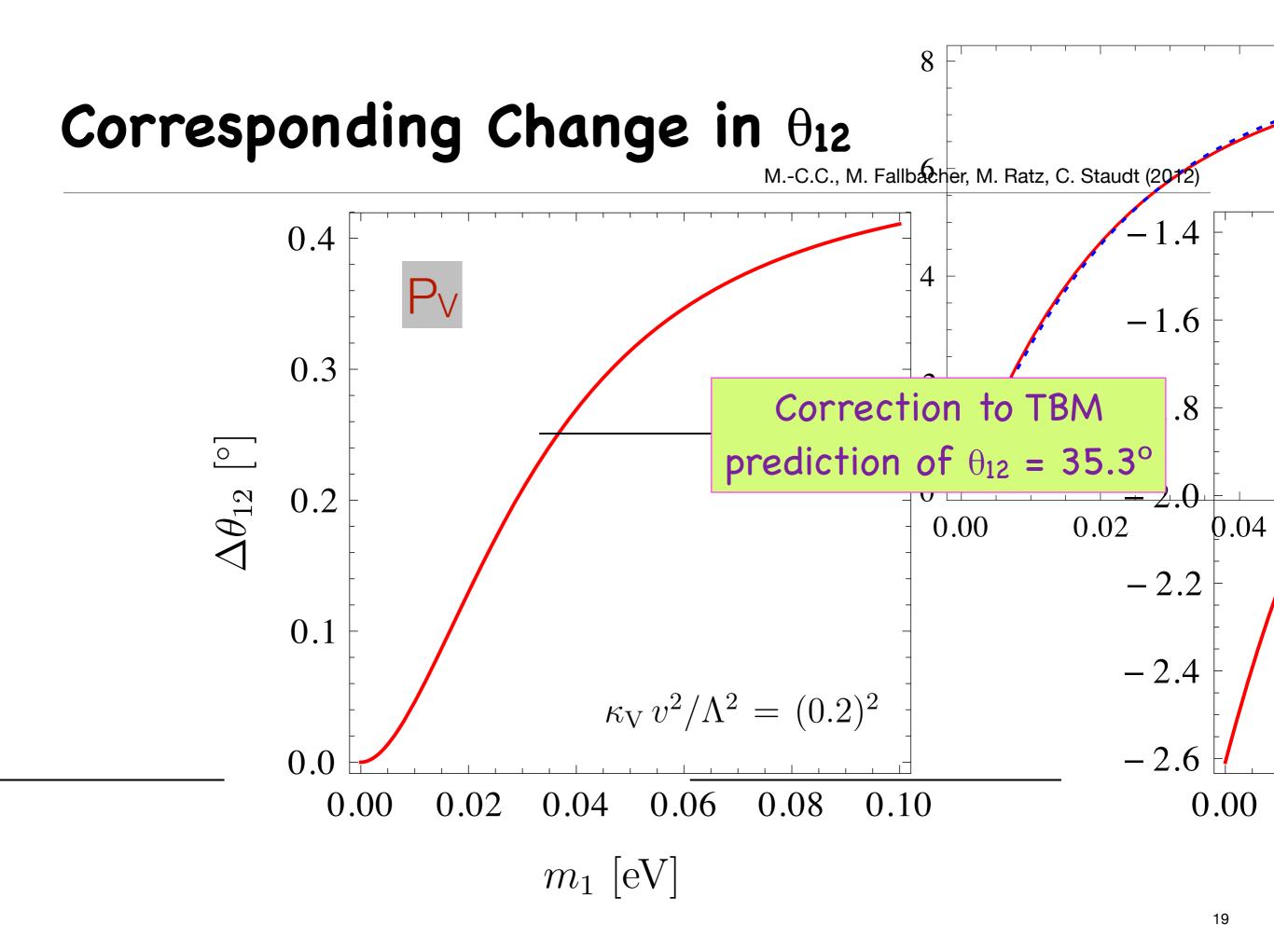
$$\simeq \frac{1}{2} [(\mathbb{1} + xP)L' \cdot H_{u}]^{T} \kappa_{\nu} [(\mathbb{1} + xP)L' \cdot H_{u}]$$

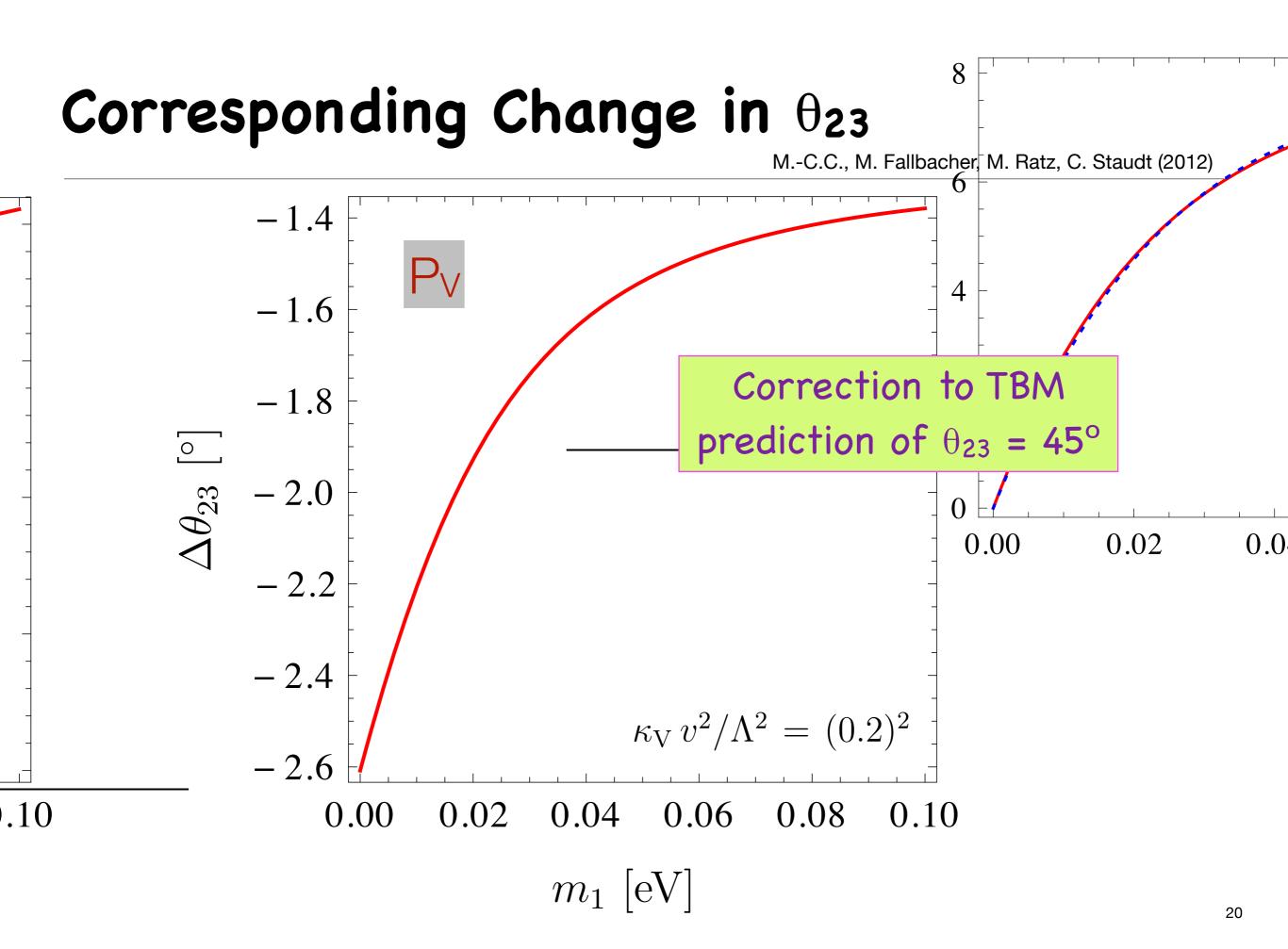
$$\simeq \frac{1}{2} (L' \cdot H_{u})^{T} \kappa_{\nu} L' \cdot H_{u} + x (L' \cdot H_{u})^{T} (P^{T} \kappa_{\nu} + \kappa_{\nu} P)L' \cdot H_{u}]$$

with

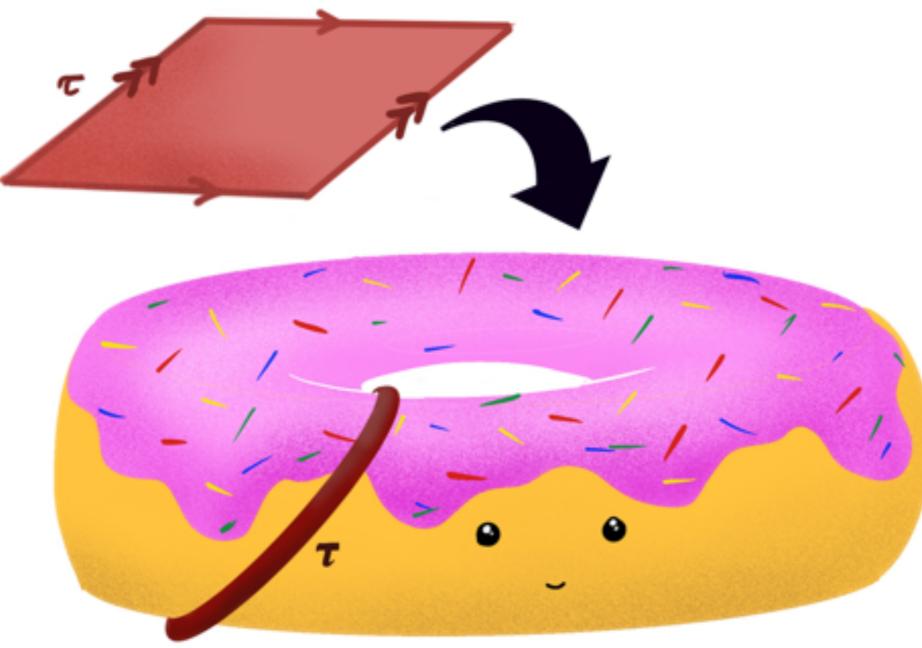
$$\kappa \cdot v_u^2 = 2m_\nu$$

0 4 An Example: Enhanced θ_{13} in A₄ M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012) 8 0 0.02 00 6 Correction to TBM prediction of $\theta_{13} = 0$ $\Delta heta_{13}$ [°] 4 $\delta \simeq \pi/2$ $\kappa_{\rm V} v^2 / \Lambda^2 = (0.2)^2$ 2 $\Delta \theta_{13}$ an. $\Delta \theta_{13}$ num. 0 0.00 0.02 0.04 0.06 0.08 0.10 $m_1 \,[\text{eV}]$

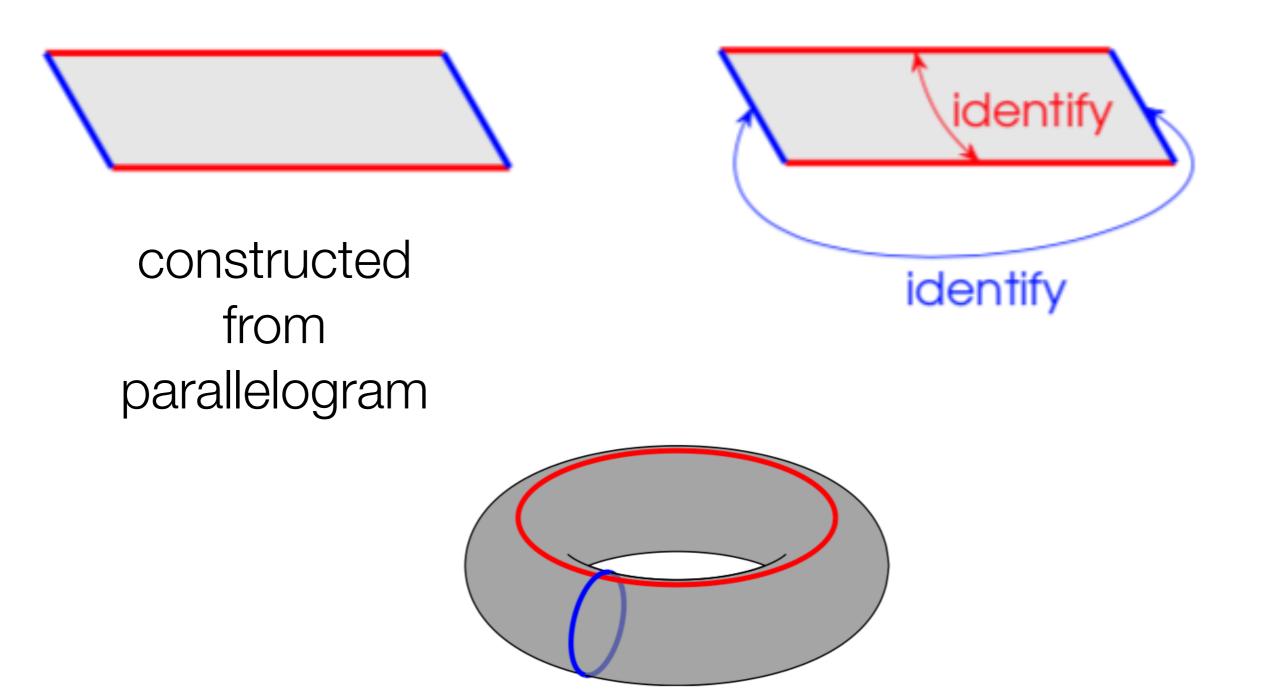




Modular Flavor Symmetries

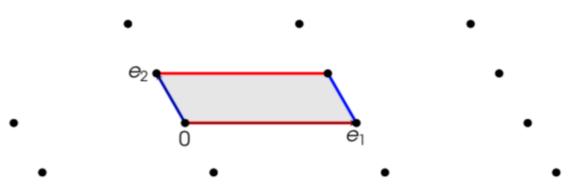


Donuts = TORI

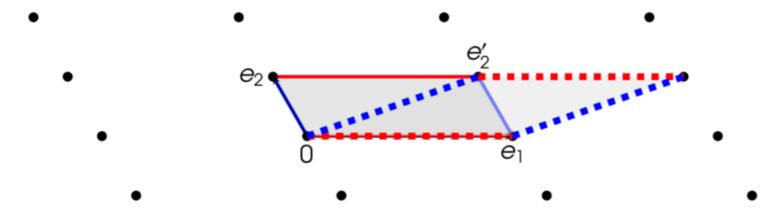


two cycles

edges \Rightarrow lattice basis vectors

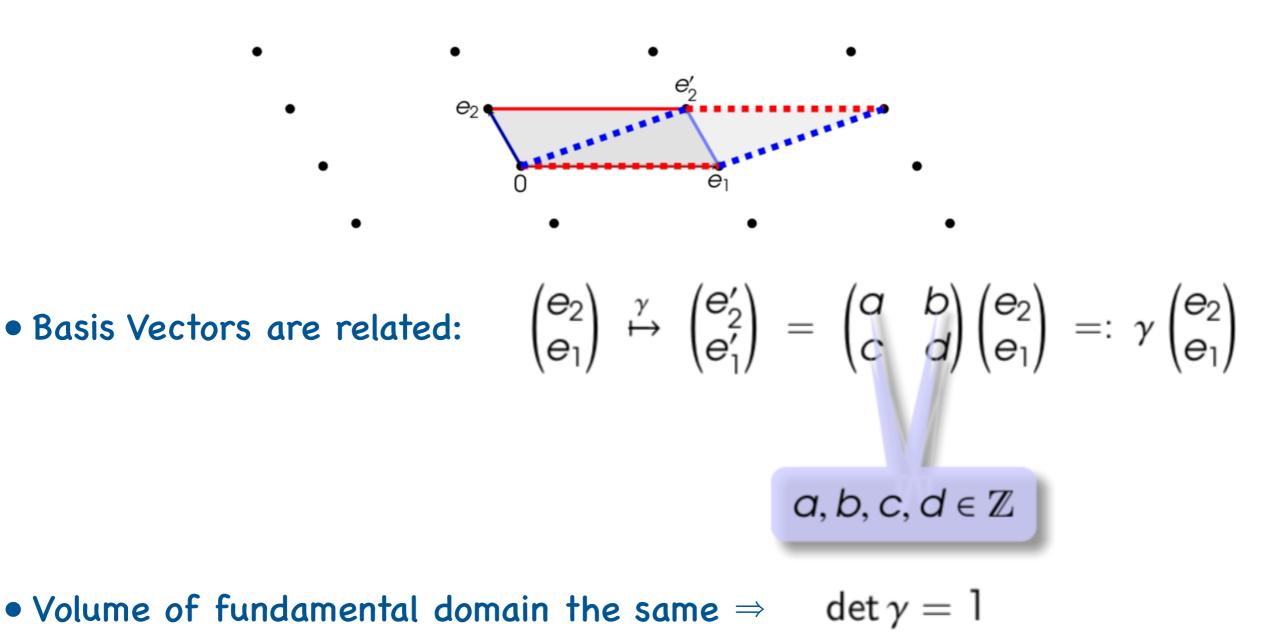


points in plane identified if differ by a lattice translation



Equivalent TORI related by Modular Symmetries

• TORI: fundamental domain not unique



• Two basic transformations:

• In complex coordinates: modulus $\tau = e_2/e_1$

• S and T generate $SL(2,\mathbb{Z})$ and satisfy

$$S^2 = (ST)^3 = 1$$

• Finite Modular Group (quotient group): $\Gamma_N := \Gamma/\Gamma(N)$ here principal congruence group $\Gamma(N)$ is

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z})/\mathbb{Z}_2 ; \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

ullet Generators of the quotient group $arGamma_{
m N}$ satisfy

$$S^2 = 1$$
, $(ST)^3 = 1$, $T^N = 1$

• Some examples

$$\Gamma_2 \simeq S_3$$
, $\Gamma_3 \simeq A_4$, $\Gamma_4 \simeq S_4$, $\Gamma_5 \simeq A_5$

Feruglio (2017)

• Imposing modular symmetry Γ on the Lagrangian:

$$\begin{split} \mathscr{L} \supset \sum Y_{i_1, i_2, \dots, i_n} \Phi_{i_1} \Phi_{i_2} \cdots \Phi_{i_n} \\ \tau & \stackrel{\gamma}{\longmapsto} \gamma \tau := \frac{a \tau + b}{c \tau + d} , \\ \Phi_j & \stackrel{\gamma}{\longmapsto} (c \tau + d)^{k_j} \rho_{r_j}(\gamma) \Phi_j , \quad \text{where } \gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \hline \mathbf{k}_i : \text{ integers} & \text{representation matrix of } \Gamma_{\mathsf{N}} \end{split}$$

• Yukawa Couplings = Modular Forms at level "N" w/ weight "k"

$$f_i(\gamma au) = (extsf{C} au + extsf{d})^{-k} \left[
ho_N(\gamma)
ight]_{ij} f_j(au)$$

$$k = k_{i_1} + k_{i_2} + ... + k_{i_n}$$

representation matrix of Γ_{N}

A Toy Modular A4 Model

Feruglio (2017)

- Weinberg Operator $\mathscr{W}_{v} = \frac{1}{\Lambda} [(H_{u} \cdot L) Y (H_{u} \cdot L)]_{1}$
- Traditional A4 Flavor Symmetry
 - Yukawa Coupling $Y \rightarrow$ Flavon VEVs (A₄ triplet, 6 real parameters)

$$Y \to \langle \phi \rangle = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \implies m_{\nu} = rac{V_u^2}{\Lambda} \begin{pmatrix} 2a & -c & -b \\ -c & 2b & -a \\ -b & -a & 2c \end{pmatrix}$$

- Modular A4 Flavor Symmetry
 - Yukawa Coupling $Y \rightarrow Modular$ Forms (A4 triplet, 2 real parameters)

$$Y \to \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \end{pmatrix} \implies m_{\nu} = \frac{V_{u}^{2}}{\Lambda} \begin{pmatrix} 2Y_{1}(\tau) & -Y_{3}(\tau) & -Y_{2}(\tau) \\ -Y_{3}(\tau) & 2Y_{2}(\tau) & -Y_{1}(\tau) \\ -Y_{2}(\tau) & -Y_{1}(\tau) & 2Y_{3}(\tau) \end{pmatrix}$$

Modular Forms

Feruglio (2017)

• Level (N) = 3, Weight (k) = 2, in terms of Dedekind eta-function

$$Y_{1}(\tau) = \frac{i}{2\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right]$$

$$Y_{2}(\tau) = \frac{-i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right]$$

$$Y_{3}(\tau) = \frac{-i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right].$$

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \qquad q \equiv e^{i2\pi\tau}$$

A Toy Modular A4 Model

Feruglio (2017)

• Input Parameters:

$$\tau = 0.0111 + 0.9946i$$

 v_u^2/Λ

• Predictions:

$$\begin{split} \frac{\Delta m_{sol}^2}{|\Delta m_{atm}^2|} &= 0.0292 \\ \sin^2\theta_{12} &= 0.295 \qquad \sin^2\theta_{13} = 0.0447 \qquad \sin^2\theta_{23} = 0.651 \\ \frac{\delta_{CP}}{\pi} &= 1.55 \qquad \qquad \frac{\alpha_{21}}{\pi} = 0.22 \qquad \qquad \frac{\alpha_{31}}{\pi} = 1.80 \quad . \end{split}$$

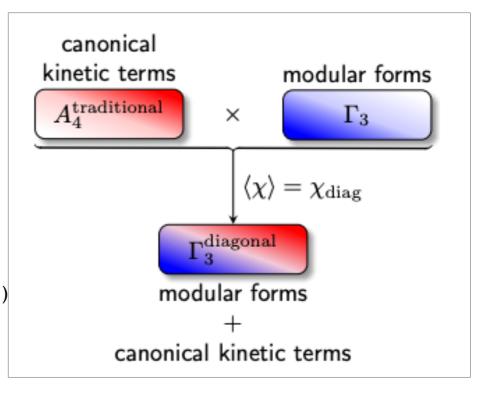
 $m_1 = 4.998 \times 10^{-2} \ eV$ $m_2 = 5.071 \times 10^{-2} \ eV$ $m_3 = 7.338 \times 10^{-4} \ eV$

Modular Symmetries: Bottom-Up Meet Top-Down

• Bottom-Up:

- reducing the number of parameters: in extreme case, entire neutrino mass matrix controlled by τ Feruglio (2017)
- traditional NA flavor symmetries: corrections to kinetic terms -> sizable for NA discrete symmetries for leptons
 - (Quasi-eclectic) setup with modular symmetries: corrections to kinetic terms can be under control — reduction of theory uncertainty MCC, Knapp-Pérez, Ramos-Hamud, Ramos-Sánchez, Ratz, Shukla (2021)
- Top-Down:
 - Modular flavor symmetries from strings
 - Modular Symmetries from magnetized tori

Leurer, Nir, Seiberg ('93); Dudas, Pokorski, Savoy ('95); M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)



e.g. Baur, Nilles, Trautner, Vaudrevange

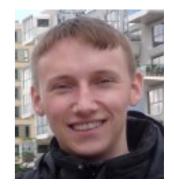
e.g. Almumin, MCC, Knapp-Pérez, Ramos-Sánchez, Ratz, Shukla (2021)

Acknowledgements

Yahya Almumin (UCI Grad)

Víctor Knapp-Pérez (former UNAM UG; UCI Grad)

Shreya Shukla (UCI Grad)

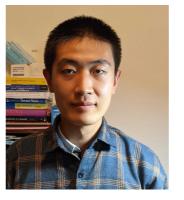


Maximilian Fallbacher (former TUM Grad)

Christian Staudt (former TUM Grad)

Andreas Trautner (MPI Heidelberg PD; former TUM Grad)

Murong Cheng (UIUC Grad; former UCI UG)



Martin Yulun Li (Virginia Tech Grad; former UCI UG)

K.T. Mahanthappa (CU Boulder) Saúl Ramos-Sánchez (UNAM, Mexico)

Michael Ratz (UCI)

Outlook

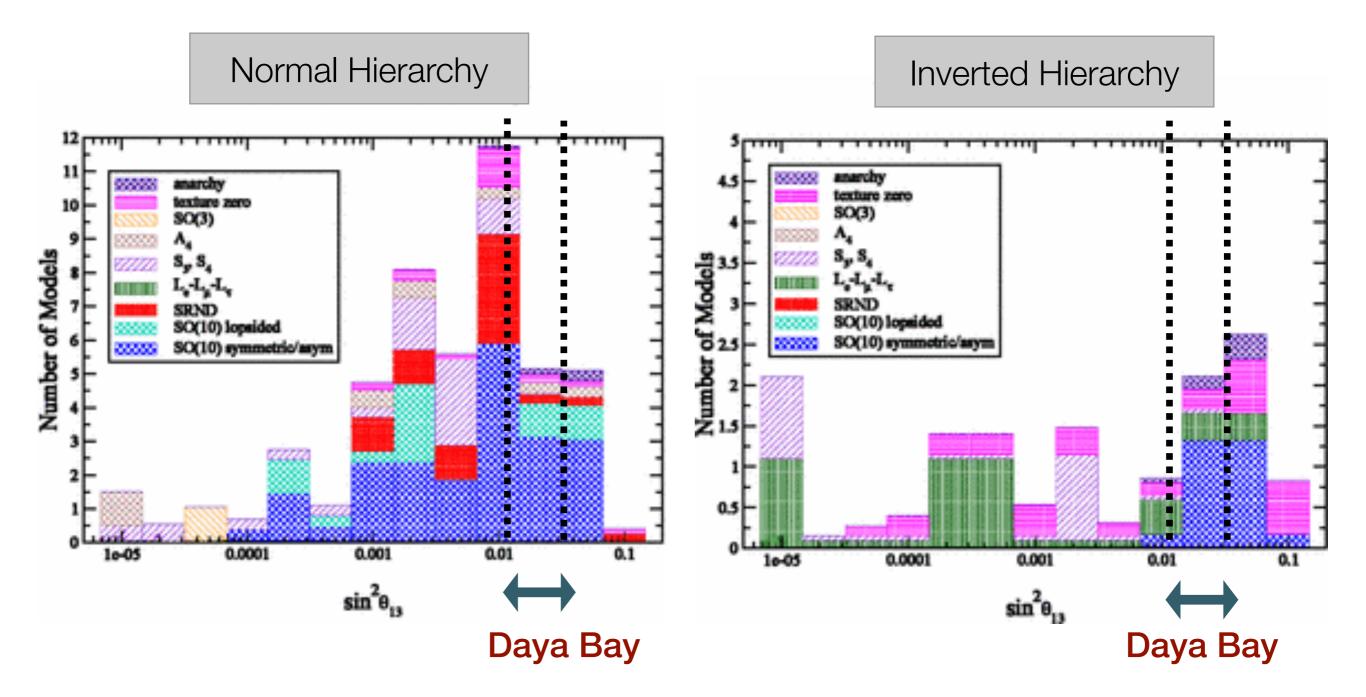
- Fundamental origin of fermion mass & mixing patterns still unknown
 - It took decades to understand the gauge sector of SM
- Uniqueness of Neutrino masses offers exciting opportunities to explore BSM
 Almumin, MCC, Cheng, Knapp-Pérez, Li, Mondol, Ramos-Sánchez, Ratz, Shukla (2022)
 - Many NP frameworks; addressing other puzzles
 - Early Universe (leptogenesis, non-thermal relic neutrinos)
- New Tools/insights:
 - Non-Abelian Discrete Flavor Symmetries
 - Deep connection between outer automorphisms and CP
 - Modular Flavor Symmetries promising approach
 - Enhanced predictivity of flavor models (enhanced theory precision)
 - Possible connection to UV physics (e.g. string theories) -> promising venue toward realistic theories
- TD-BU: diverse perspectives drive intellectual excellence

Backup Slides

Mixing Parameters and Mass ordering

ort Citation (/prd/export/10.1103/PhysRevD.74.113006)

(/



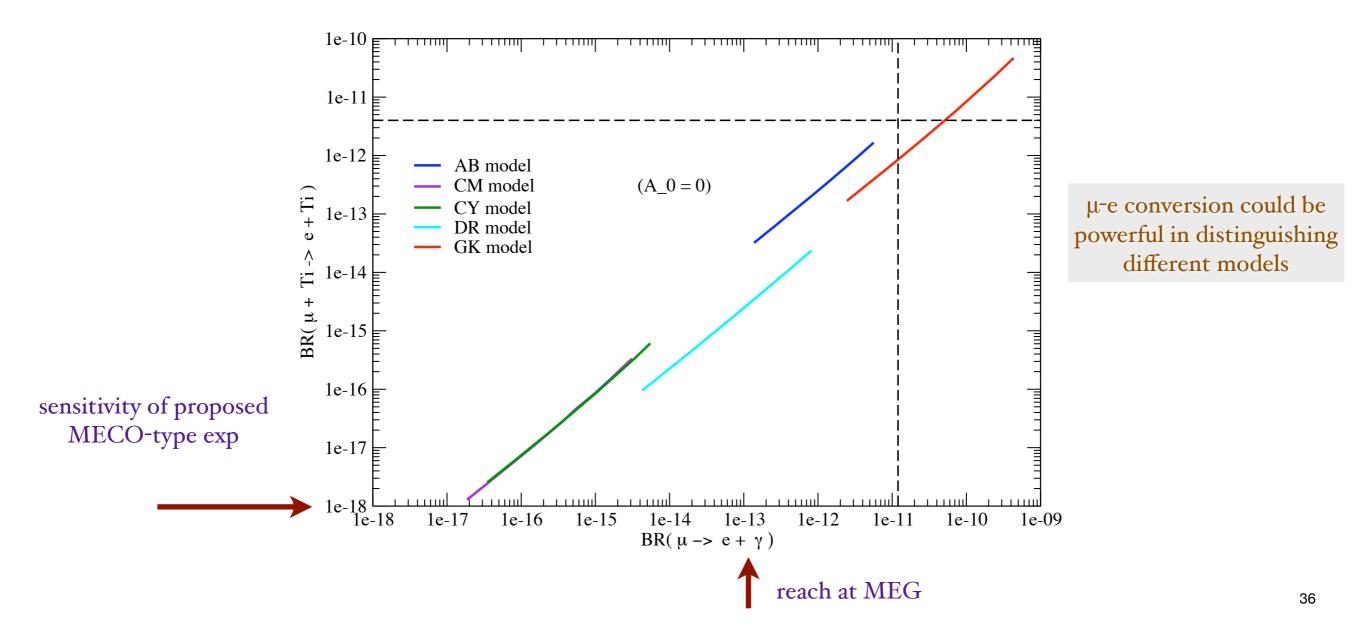
Histograms of the number of models for each sin C. Albright, M.-C.C. (2006) Iower diagram includes models that predict inver

Correlations: cLFV Processes

• Predictions for cLFV processes in five "viable" SUSY (10) models

Albright, MCC (2008)

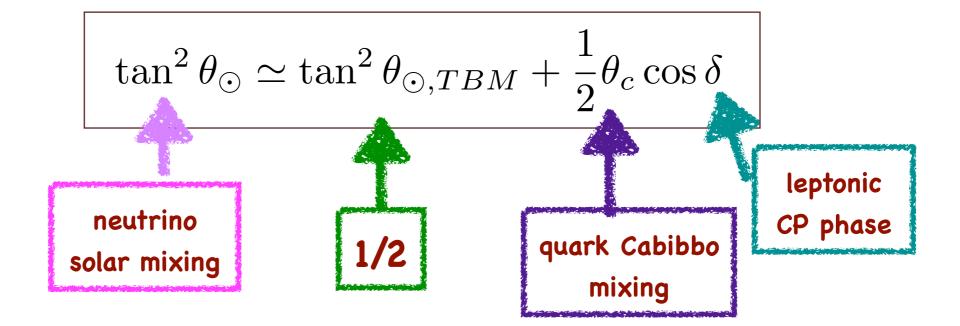
- mSUGRA boundary condition Rare Processes
 Including dark matter constraints from WMAP



Example: SU(5) Compatibility \Rightarrow T' Family Symmetry

- Double Tetrahedral Group T': double covering of A4
- Symmetries \Rightarrow 10 parameters in Yukawa sector \Rightarrow 22 physical observables
- Symmetries
 ⇒ correlations among quark and lepton mixing parameters

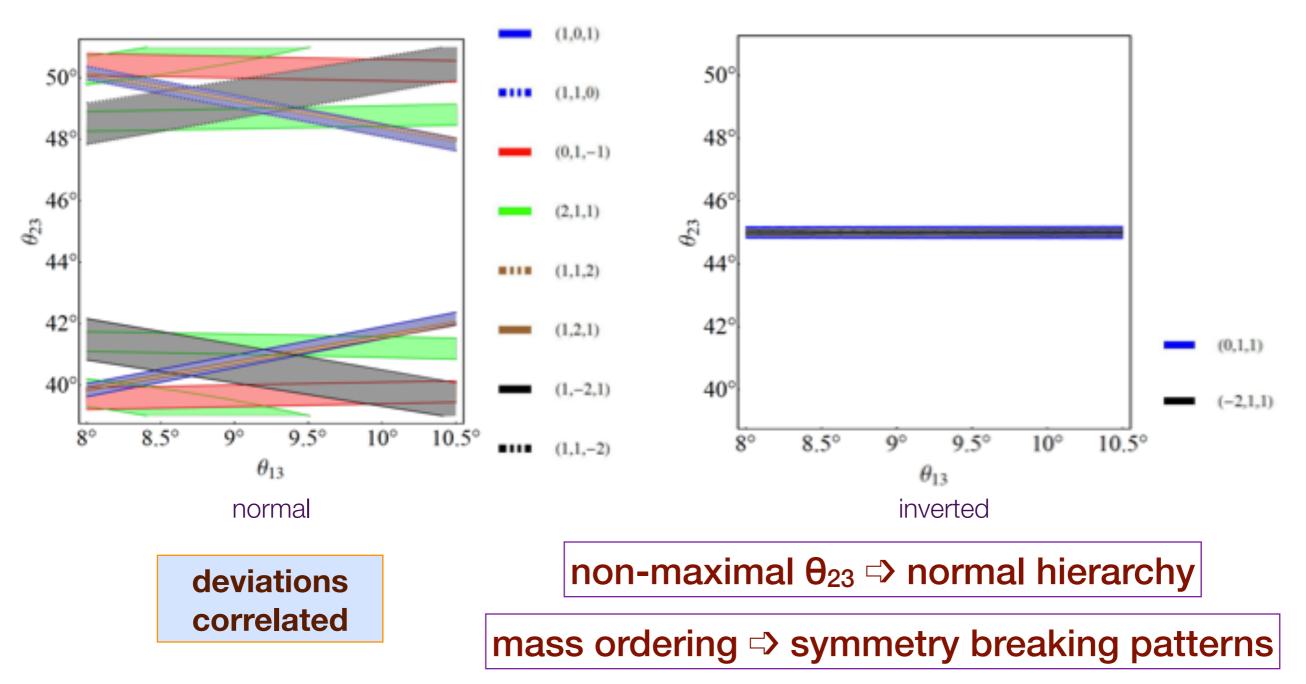
$$\theta_{13} \simeq \theta_c/3\sqrt{2} \longleftarrow \begin{array}{c} {\rm CG's \ of} & {\rm no \ free} \\ {\rm SU(5) \ \& T'} & {\rm parameters!} \end{array}$$



M.-C.C, K.T. Mahanthappa (2007, 2009)

"Large" Deviations from TBM in A₄

M.-C.C, J. Huang, J. O'Bryan, A. Wijangco, F. Yu, (2012)

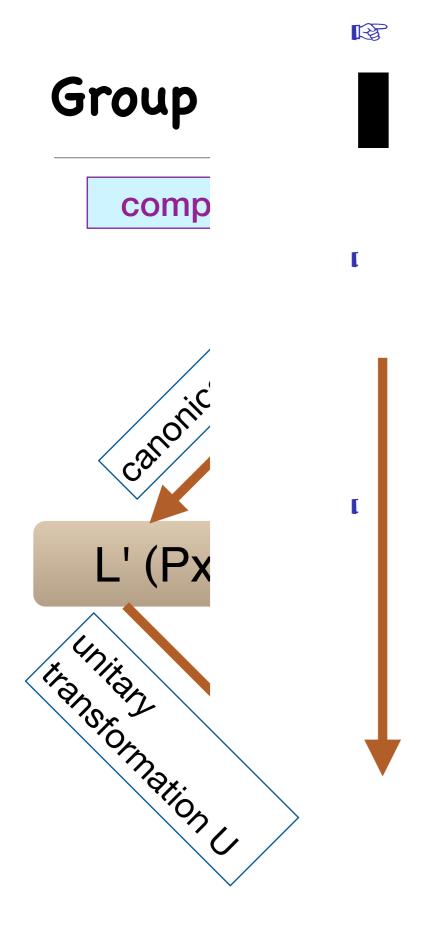


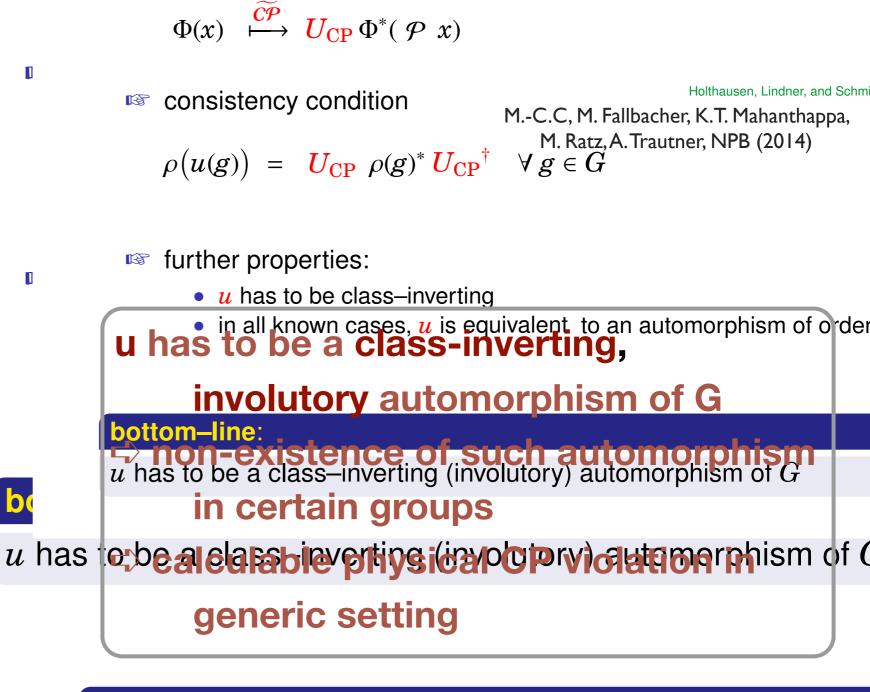
• Different A4 breaking patterns:

generalized CP transformation

Generalizing CP transformations

— Constraints on generalized CP transformations

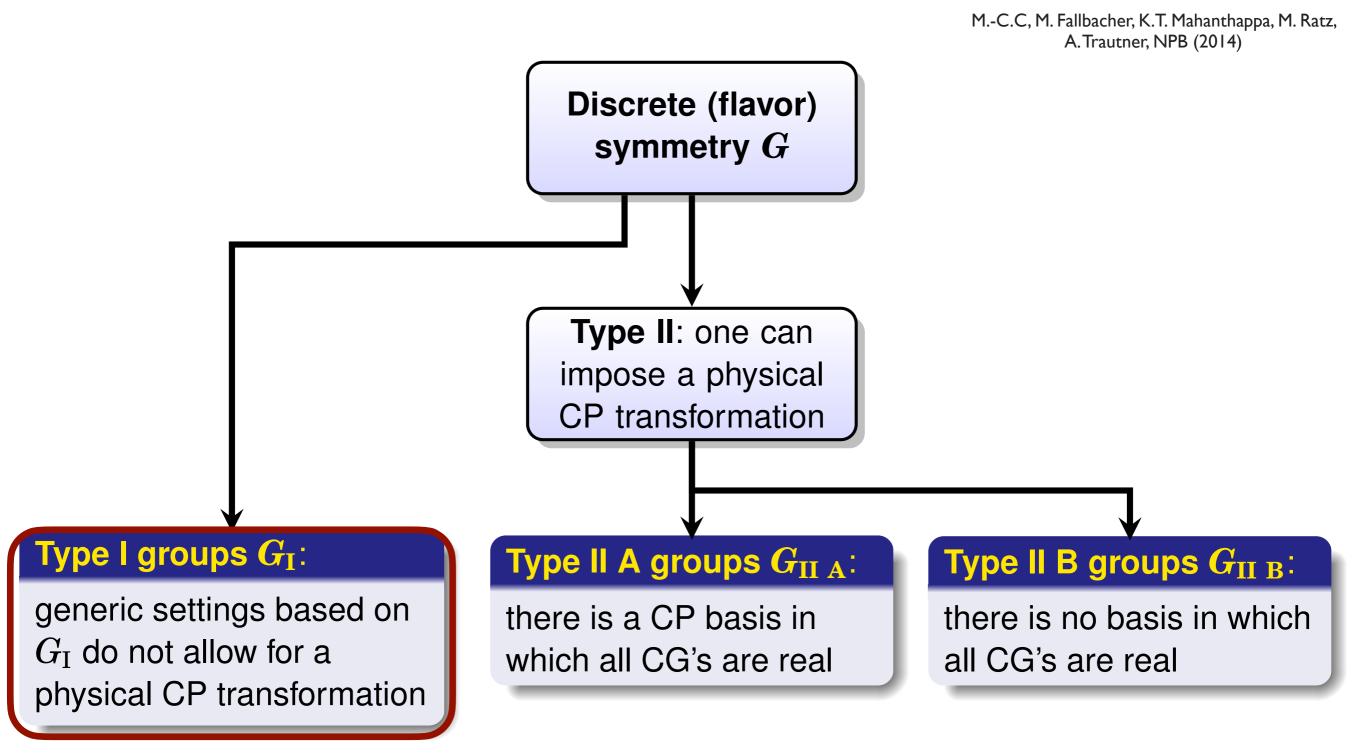




bettem-line:

u has to be a class-inverting (involutory) automorphism of G

Group Theoretical Origin of CP Violation



Kähler Corrections in Modular A4 Model

M.-C.C., Ramos-Sánchez, Ratz (2019)

