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INTRODUCTION

WHY SHOULD WE CARE?  

Experiment Theory

Statistics, systematics

Appropriate precision theory

Detector capabilities

▸ Scattering with nuclear targets is an old subject.  So is there anything new 
to say? 
 
 
 
 
 

1. Higher accuracy experiments demand  response from theory.  

2. DIS and heavy quark physics have taught us a lot about how to minimize 
theoretical uncertainties when describing hadronic systems. 
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INTRODUCTION

LONG BASELINE OSCILLATIONS

δ (
σνe

σνμ
) ∼ ± 1 %
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INTRODUCTION

QED RADIATIVE CORRECTIONS

δ (
σνe

σνμ
) ∼ ± 1 %

1. Loop effects depend on lepton 
masses.  

2. Real photon radiative depends on 
lepton masses.  

3. Coulomb effects depend on sign 
of lepton charge. 
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INTRODUCTION

WHY FACTORIZATION THEOREMS? 
‣ At a nominal 1% precision radiative 

corrections must be included.  

‣ Photon can be soft, hard, collinear. 
Different scales  different physics.  

‣ "Loops and legs” make this a 
complicated multi-scale problem.   

↔

‣ arXiv:2105.07939

‣ Tomalak, Chen, Hill, McFarland 2021

ℳ = S ⊗ J ⊗ H
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INTRODUCTION

WHY FACTORIZATION THEOREMS? 

‣ arXiv:2105.07939

‣ Tomalak, Chen, Hill, McFarland 2021

ℳ = S ⊗ J ⊗ H

‣ Factorization theorems let us isolate 
difficult problems from one another.  

3 × (difficult) ≪ (difficult)3

Soft physics. Hard physics. Collinear physics. 
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INTRODUCTION

WHY FACTORIZATION THEOREMS? 

ℳ = S ⊗ J ⊗ H

‣ Factorization theorems let us isolate 
difficult problems from one another.  

3 × (difficult) ≪ (difficult)3

Soft physics. Hard physics. Collinear physics. 

Isolate hard nuclear physics from QED loops and legs
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INTRODUCTION

FACTORIZATION AND EFT 

‣ arXiv:2105.07939

‣ Tomalak, Chen, Hill, McFarland 2021

ℳ = S ⊗ J ⊗ H

‣ Each term in the factorization theorem 
corresponds to a different EFT. 

Soft physics. Hard physics. Collinear physics. 

Hard function ↔ Wilson Coefficient
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INTRODUCTION

WHAT IS NEW WITH NUCLEI?
‣ Loops connect high energy leptons, to 

very heavy nuclei.  

‣ At long wavelengths the nucleus can 
couple coherently to photons.  

‣ Radiative corrections can be enhanced 
by the charge of the nucleus.

λ ≳ Rα → Zα for L ≪ 1/R
Loop momentum.
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INTRODUCTION

OLD PRESCRIPTIONS 

‣ The historical approach to this problem is 
to treat the nucleus as a static external 
field.

ν

N

N′�

GF

ℓ(−)⟩

Ze Ze

N′�

ℓ ℓ ℓGF

ν

N

How does this emerge from
photon exchange with nuclei?

10



INTRODUCTION

THE REST OF THIS TALK

1. Crossed ladder diagrams do indeed reproduce 
background field (+ small corrections).  

2. Comment on the structure of factorization 
theorems and hierarchies of scale. 

3. Extracting all orders results for low momentum 
probes using factorization theorems. 
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CROSSED LADDERS AND THE STATIC LIMIT 
Polology for heavy composite objects 
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POLOLOGY FOR COMPOSITES

FORMULATE DIAGRAMATICS IN TERMS OF IN-OUT CORRELATORS 
Gμ1...μN ; ν(q1, . . . qN)

= ∫ [d4x] ei∑i qi⋅xi out⟨B |T{Jμ1
(x1) . . . 𝒥ν . . . JμN

(xN)} |A⟩in

▸Perturbation theory with “blobs”  

▸One hard current insertion.  

▸Ex. two photon exchange with 
doubly virtual Compton tensor. ν
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POLOLOGY FOR COMPOSITES

FORMULATE DIAGRAMATICS IN TERMS OF IN-OUT CORRELATORS 

out⟨B |(Big Blob) |A⟩in

▸Perturbation theory with “blobs”  

▸One hard current insertion.  

▸Ex. two photon exchange with 
doubly virtual Compton tensor. ν
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POLOLOGY FOR COMPOSITES

POLOLOGY IN PICTURES
▸Use Weinbergs ``Polology’’ theorem to seperate out elastic poles.

ν ν
=

+ extra▸Non-pole terms.   

▸Other inelastic excitations }
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POLOLOGY FOR COMPOSITES

DIAGRAMATIC CONSEQUENCES
▸Use eikonal propagators and couplings to photons.  

▸ Include a charged form factor at each vertex 

Note: This is gauge invariant!   
                    (sticking in form factors often is not)

=
i

v ⋅ q + iε
= iZe vμFch(q2)

Nuclear structure inside 
the loop expansion 

16



EIKONAL FACTORS CONSTRAIN ENERGY TRANSFER
▸ Sum of all permutations of eikonal propagators gives

} ⊗

(n + 1) × n! → (n + 1)

∑
ij∈π(1,2,3)

1
v ⋅ qi + iε

1
v ⋅ (qi + qj) + iε

= (2πi)δ(v ⋅ q1)(2πi)δ(v ⋅ q2)

Energy transfer
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EIKONAL FACTORS CONSTRAIN ENERGY TRANSFER
▸ Sum of all permutations of eikonal propagators gives

} ⊗

(n + 1) × n! → (n + 1)

interference of diagrams = no energy transfer
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WHAT HAVE WE ASSUMED
▸ No recoil of heavy target   including from hard current. 

▸ Form factors are identical everywhere. 

vA = vB

FA(q2) ≠ FB(q2) ZA = ZB ± n
▸ Can account for this with perturbation theory. 

FA(q2) = FB(q2) + δF(q2) n ≪ ZA ≈ ZB

▸ More realistic scenario
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SUMMARY:
▸External field approximation is valid up to small corrections 

controlled by: 

δFAB(Q2) ∼ O(α) 1 − v ⋅ v′� = O(QH /MA)
▸Nuclear asymmetry ▸Recoil from hard vertex

▸ Inelastic excitations

∼ O(α) or ∼ O(Q2R2)
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THE STRUCTURE OF FACTORIZATION THEOREMS WITH NUCLEI 
The role nuclear structure, and hierarchies of scale
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FACTORIZATION THEOREMS

CONCRETE EXAMPLE: LEPTON PAIRS
Nuclear Mass

Lepton Energy

Nuclear 
Coherence30 MeV

ϵ2 |p2 |
600 MeV
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FACTORIZATION THEOREMS

CONCRETE EXAMPLE: LEPTON PAIRS
Nuclear Mass

Lepton Energy

Nuclear 
Coherence30 MeV

ϵ2 |p2 |
10 MeV
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FACTORIZATION THEOREMS

DIFFERENT HIERARCHIES OF SCALE MATTER

ℳ = S ⊗ H
‣ To the lepton, what is hard, and what is 

soft is set by it’s own momentum.

Lepton 
Energy

Nuclear 
Coherence

Lepton 
Energy

Nuclear 
Coherence

Point like Eikonal

‣ When  the Coulomb field can 
give "big kicks” to the lepton. 

|p | ≪ 1/R

‣ When  the Coulomb field can 
only give "little kicks” to the lepton. 

|p | ≫ 1/R
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FACTORIZATION THEOREMS

DIFFERENT HIERARCHIES OF SCALE MATTER

ℳ = S ⊗ H Lepton 
Energy

Nuclear 
Coherence

Eikonal

‣ In the high energy limit, Coulomb corrections 
are embedded in the soft-function. 

‣ Relevant for GeV energy neutrinos. 

‣ Ongoing work with R. Hill and O. Tomalak. 
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FACTORIZATION THEOREMS

DIFFERENT HIERARCHIES OF SCALE MATTER

ℳ = S ⊗ H
‣ In the ``point-like’’ limit, virtual momentum 

transfers can be comparable to the 
lepton’s momentum. 

Lepton 
Energy

Nuclear 
Coherence

Point like

‣ Coulomb corrections actually reside 
inside the hard function.  

This was a surprise
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ALL ORDERS COULOMB CORRECTIONS IN THE POINT-LIKE LIMIT 
Wavefunctions, and factorization, for amplitudes at all-orders in Zα
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ALL ORDERS RESULTS IN THE STATIC POINT LIMIT

POINT-LIKE FACTORIZATION THEOREM

‣ Coulomb corrections reside inside the 
hard function.  

ℳ = ℳS ⊗ ℳH ⊗ ℳUV

We want to compute this

‣ Consider a charged particle produced in 
by a contact interaction.

Structure dependent 
corrections
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ALL ORDERS RESULTS IN THE STATIC POINT LIMIT

START SIMPLE: NON-RELATIVISTIC CASE

ℳ = ℳS ⊗ ℳH

‣ This should reproduce classic 
Sommerfeld factor

S(ξ) = ψ(0)
2

= Γ(1 + iξ) e−πξ/2
2
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ALL ORDERS RESULTS IN THE STATIC POINT LIMIT

START SIMPLE: NON-RELATIVISTIC CASE

ℳ = ℳS ⊗ ℳH

ψλ,p(0) = ℳS(λ) ℳH(p)

Solve Schrodinger Known to all orders

ℳH(p) = ℳ−1
S ψ†

λ,p(0)
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ALL ORDERS RESULTS IN THE STATIC POINT LIMIT

START SIMPLE: NON-RELATIVISTIC CASE

‣ Actual result holds at amplitude level!  

‣ Need a careful treatment of IR divergences to 
obtain the right answer.

ℳS = e iξ log(μ/λ)

ℳH = e iξ[log(2p/μ) + γE] Γ(1 − iξ)eξπ/2

All orders proof of re-summation 
into an exponential 
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ALL ORDERS RESULTS IN THE STATIC POINT LIMIT

FACTORIZATION FOR RELATIVISTIC FERMIONS 

ℳ = ℳS ⊗ ℳH ⊗ ℳUV

‣ Relativistic problem has new UV divergences.  

‣ How do we extract the hard function? 

Compute ℳUV to all orders
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ALL ORDERS RESULTS IN THE STATIC POINT LIMIT

ℳH(p) = Ψλ,p(x)ℳ−1
UV(x)ℳ−1

S (λ)

Compute ℳUV to all orders

Obtain ℳH to all orders

FACTORIZATION FOR RELATIVISTIC FERMIONS 
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ALL ORDERS RESULTS IN THE STATIC POINT LIMIT

SPECIAL PROPERTIES OF UV REGION 
‣ UV region has novel loop properties. 

‣ Can be computed at all orders in perturbation theory.  

‣ The series can be summed, and converges.  

‣ Result can be normalized in  at all orders/non-pertrubatively in MS Zα

RESULT
‣ Fundamental result in QED at all orders.  

‣ Universally applicable for low momentum scattering with nuclei. 
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CONCLUSION AND OUTLOOK 
Where are we now and where are we going? 
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WHERE ARE WE NOW? 
▸Nucleus introduces new scales.  
 
1) Ultra heavy mass scale.  
2) Low scale of nuclear coherence.

▸Regions and diagrams that generate Coulomb potential understood. 

▸Structure of factorization theorem incorporating nuclear scale is clear.  

▸Factorization demonstrated to all orders in  in point-like limit. Zα
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WHERE ARE WE GOING? 

▸How do distorted wave effects interface with nuclear structure? Are they 
independent from nucleon FSI?  

▸What is the best way to interface with existing tools? 

▸Nucleus introduces new scales.  
 
1) Ultra heavy mass scale.  
2) Low scale of nuclear coherence.
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D

BROADER IMPACT
▸Many of the issues I describe here are essential for the neutrino cross 

section problem (this is our community’s problem).  

▸The effects are universal to any high-precision experiment with nuclear 
targets.  e.g.  muon conversion,  beta decay of heavy nuclei. 

▸Coulomb effects due to large-Z 
nuclei are inherently complicated 
by nuclear structure. 

A ∼ 2Z rA ∼ A1/3r0
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CONCLUSIONS
1. QED corrections are a mandatory theory input for %-level precision on 

cross sections (large  ,  large logs). 

2. Background field is an approximation, valid in the static limit up to 
corrections of .  

3. Nuclear radius sets new scale in factorization theorems. Qualitatively 
different structure depending on hierarchy of scales.  

4.  Factorization has been tested at all orders in perturbation theory in the 
point-like limit.  

5. New formal structures and fundamental amplitudes computed in 
closed form for the first time.  

Z

O(α)
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CONCLUSIONS
1. QED corrections are a mandatory theory input for %-level precision on 

cross sections (large  ,  large logs). 

2. Background field is an approximation, valid in the static limit up to 
corrections of .  
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Z

O(α)

Isolate hard nuclear physics from QED loops and legs 40
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LOOP EXPANSIONS FOR 
WAVEFUNCTIONS
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WAVEFUNCTIONS

CONNECTION BETWEEN DISTORTED WAVES AND LOOPS

▸ We have shown that perturbative expansions of HPET loops  
match onto perturbative expansion of external field.  

▸ Within external field calculation how can we see 
correspondence with distorted wave methods?
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WAVEFUNCTIONS

CONNECTION BETWEEN DISTORTED WAVES AND LOOPS  | NR-QM

▸ Consider Lipmann-Schwinger Equation for in/out states

|ψ(±)
p ⟩ = |ϕp⟩ +

1
H − Ep ± iε

V |ψ(±)
p ⟩

Insert 1 = ∫
d3Q
(2π)3

|Q⟩⟨Q |

|ψ(±)
p ⟩ = |ϕp⟩ +

1
H − Ep ± iε

V |ϕp⟩ +
1

H − Ep ± iε
V

1
H − Ep ± iε

V |ϕp⟩ + . . .
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WAVEFUNCTIONS

CONNECTION BETWEEN DISTORTED WAVES AND LOOPS  | NR-QM

|ψ(±)
p ⟩ = |ϕp⟩ +

1
H − Ep ± iε

V |ϕp⟩ + . . .

|ψ(±)
p ⟩ = |p⟩ + ∫

d3Q
(2π)3

1
2P ⋅ Q + Q2 ± iε

Zα
Q2

|p + Q⟩

⟨x |ψ(±)
p ⟩ = eip⋅x (1 + ∫

d3Q
(2π)3

1
2P ⋅ Q + Q2 ± iε

Zα
Q2

eiQ⋅x + . . . )
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WAVEFUNCTIONS

THIS ALLOWS US TO RESUM DIAGRAMATICS 

⟨x |ψ(±)
p ⟩ = eip⋅x (1 + ∫

d3Q
(2π)3

1
2P ⋅ Q + Q2 ± iε

Zα
Q2

eiQ⋅x + . . . )
▸ Can use method of regions to separate out physics at different scales.  

▸ E.g. introduce IR regulator  .   
Two regions: hard ( ) and soft ( ).  

▸ Coulomb phase comes from soft region, RG exponentiation.  

▸ Sommerfeld comes from IR-divergent piece in hard region.

Q2 → Q2 + σ2

Q ∼ P Q ∼ σ
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METHOD OF REGIONS
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METHOD OF REGIONS

CONSIDER A LOOP INTEGRAL WITH TWO SCALES

∫ dQ
1

Q2 + λ2

1
2p ⋅ Q + Q2

= ∫soft
dQ

1
Q2 + λ2

1
2p ⋅ Q

+ ∫hard
dQ

1
Q2

1
2p ⋅ Q + Q2

+ O ( λ
p )

Taylor expansion. 
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WAVEFUNCTIONS

FACTORIZATION FROM METHOD OF REGIONS

ℳ = ∑ (Zα)n ℳ(n)

ℳ = ℳSℳH + O(λ/p)

ℳS = ∑ (Zα)nℳ(n)
S ℳH = ∑ (Zα)nℳ(n)

H

Only one region in each sum.
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