

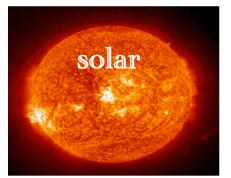
Direct and Indirect BSM searches at Neutrino Experiments

Neutrino Theory Network Workshop

June 21-23, 2022

Zahra Tabrizi

Neutrino Theory Network fellow



Status of Neutrino Physics in 2022

Super-Kamiokande, Borexino, SNO

MBL: Daya Bay, RENO, Double Chooz

LBL: KamLAND

IceCube, Super-Kamiokande

T2K, MINOS, NOvA

mixing angles:

$$sin^2 \theta_{12} @ 4\%$$

 $sin^2 \theta_{13} @ 3\%$
 $sin^2 \theta_{23} @ 3\%$

mass squared differences:

$$\Delta m_{21}^2$$
 @ 3% $|\Delta m_{31}^2|$ @ 1%

Future: DUNE, T2HK, JUNO

- Increase the precision
- CP-phase?
- Mass hierarchy?

Also:

Mass scale? Dirac or Majorana? Sterile?

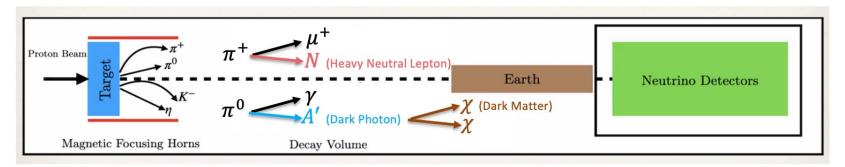
Questions:

How can we systematically use different neutrino experiments for BSM searches?

- How can we connect results to other particle physics experiments?
- Can neutrino experiments probe compelling new physics beyond the reach of high energy colliders?

Neutrino Experiments as Dark Sector factories!

1) Direct Production of New Physics

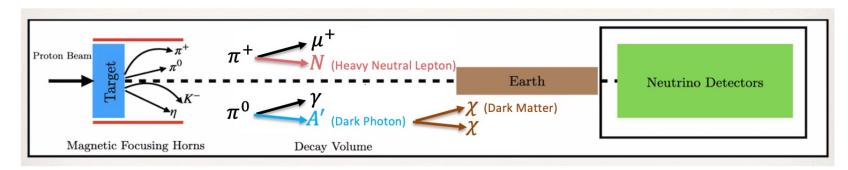


The huge fluxes of neutrinos and photos can be used for BSM searches

Credit: Kevin Kelly

Neutrino Experiments as Dark Sector factories!

1) Direct Production of New Physics

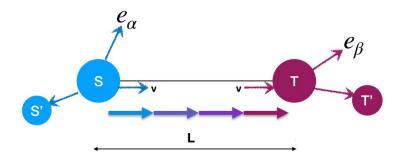


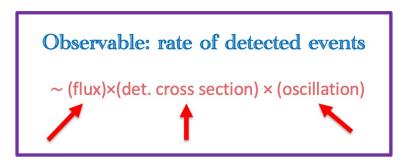
The huge fluxes of neutrinos and photos can be used for BSM searches

Credit: Kevin Kelly

How about "Heavy" New Physics?

2) Affect Neutrino Interactions: Indirect Search

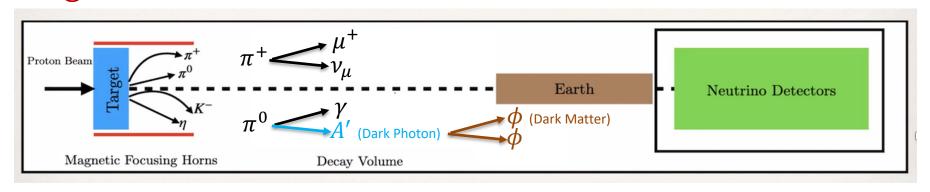




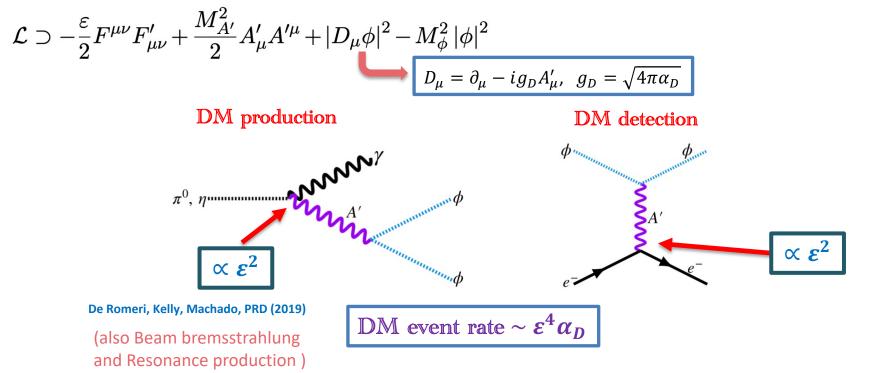
Outline

- 1) Direct Search of Dark Sectors:
 - Light Dark Matter
 - Axion-Like Particles
- 2) Indirect Search-EFT:
 - Why EFT?
 - EFT at FASERv
 - EFT at DUNE?
- Conclusion

Light Dark Matter

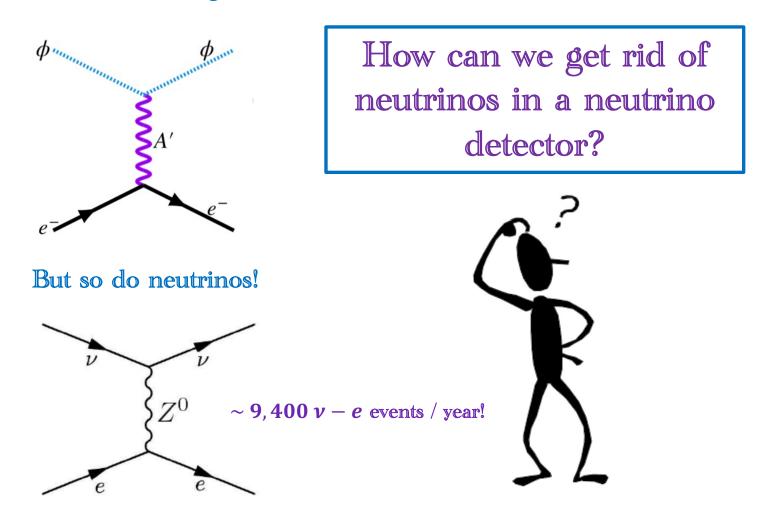


Photons at the target kinetically produce Dark Photons, which decay into dark matter:

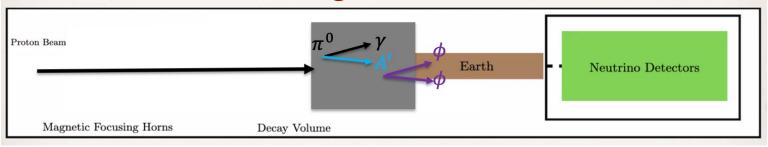


Light Dark Matter

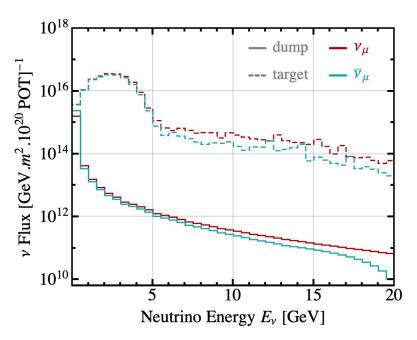
DM signal: elastic scattering on electrons

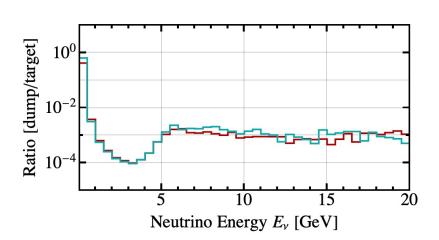


Light Dark Matter---Target-less DUNE



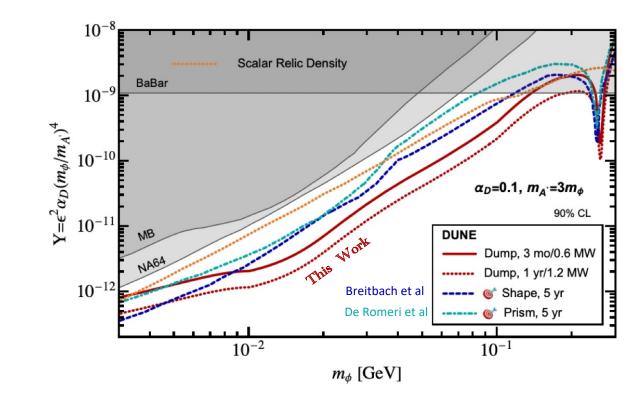
- Impinging protons directly to the dump area;
- Shorter distance between the source point and the detector → more DM signal;
- Charged mesons absorbed in the Al beam dump before decay;
- The ν flux decreases by 3 orders of magnitude \rightarrow Only 0.5 ν -e background in 3 mo-0.6 MW!





Bhattarai, Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu arXiv: 2206.06380

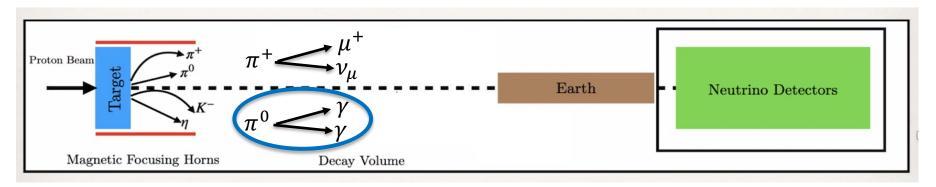
Light Dark Matter---Target-less DUNE



Bhattarai, Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu arXiv: 2206.06380

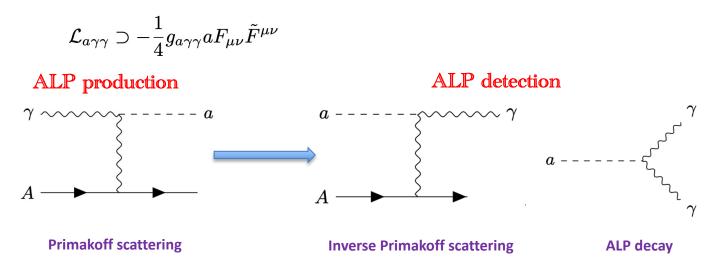
Target-less DUNE can probe the parameter space for thermal relic DM in only 3 months!

ALPs at Neutrino Experiments

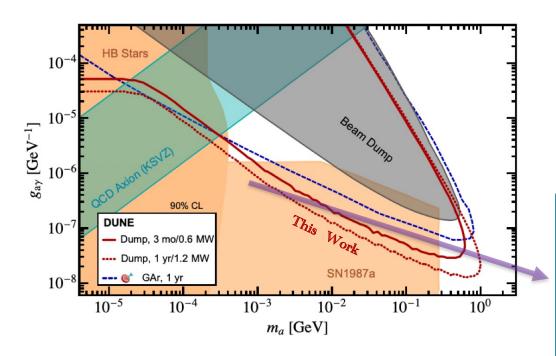


Credit: Kevin Kelly

Using photons to produce ALPs:



ALPs at Neutrino Experiments



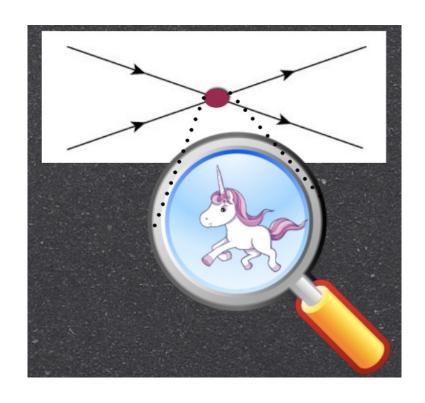
Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRL (2021)

Bhattarai, Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu arXiv: 2206.06380

- The only lab-based constraints!
- Can probe QCD-axion
- 3 months target-less DUNE can do better than 1 yr GAr

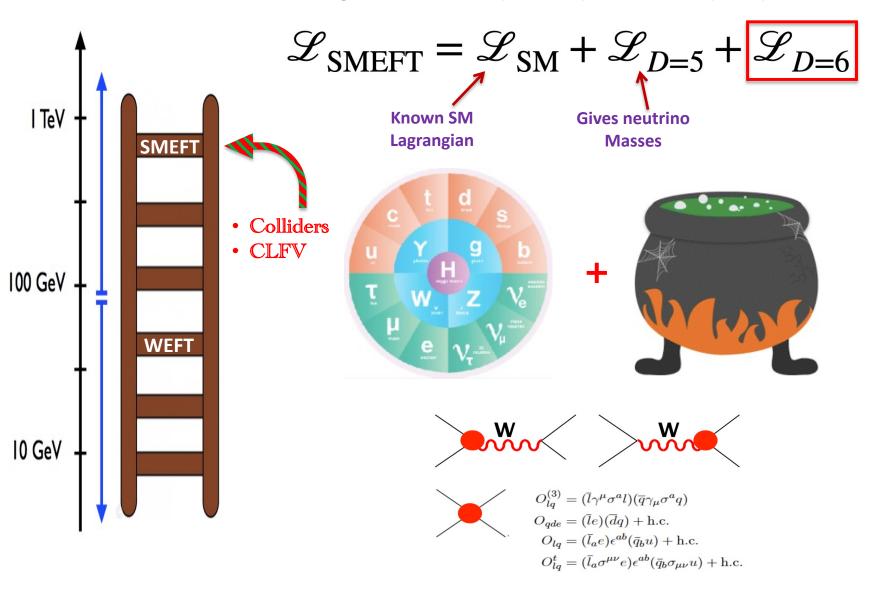
Outline

- 1) Direct Search of Dark Sectors:
 - Light Dark Matter
 - Axion-Like Particles
- 2) Indirect Search-EFT:
 - Why EFT?
 - EFT at FASERv
 - EFT at DUNE?
- Conclusion

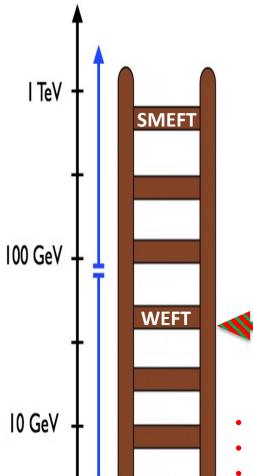


EFT ladder

SMEFT: minimal EFT above the weak scale



EFT ladder WEFT: Effective Lagrangian defined at a low scale μ ~ 2 GeV



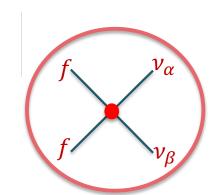
• CC: New left/right handed, (pseudo)scalar and tensor interactions

$$\mathcal{L}_{\text{WEFT}} \supset -\frac{2V_{ud}}{v^{2}} \{ [\mathbf{1} + \epsilon_{L}]_{\alpha\beta} (\bar{u}\gamma^{\mu}P_{L}d)(\bar{\ell}_{\alpha}\gamma_{\mu}P_{L}\nu_{\beta}) + \epsilon_{R}]_{\alpha\beta} (\bar{u}\gamma^{\mu}P_{R}d)(\bar{\ell}_{\alpha}\gamma_{\mu}P_{L}\nu_{\beta}) + \frac{1}{2} \epsilon_{S}]_{\alpha\beta} (\bar{u}d)(\bar{\ell}_{\alpha}P_{L}\nu_{\beta}) - \frac{1}{2} \epsilon_{P}]_{\alpha\beta} (\bar{u}\gamma_{5}d)(\bar{\ell}_{\alpha}P_{L}\nu_{\beta}) + \frac{1}{4} \hat{\epsilon}_{T}]_{\alpha\beta} (\bar{u}\sigma^{\mu\nu}P_{L}d)(\bar{\ell}_{\alpha}\sigma_{\mu\nu}P_{L}\nu_{\beta}) + \text{h.c.} \}$$

NC: New left and right handed interactions

$${\cal L}_{
m WEFT} \supset -rac{2}{v^2} \epsilon^{fX}_{lphaeta} (ar
u_lpha \gamma^\mu P_L
u_eta) \left(ar f \gamma_\mu P_X f
ight)$$

- Neutrino experiments
- Hadron Decays
- β-decays



Why EFT?

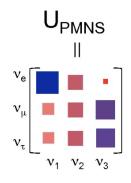
- One consistent framework to probe different aspects of particle interactions;
- Constraints from different low/high experiments can be meaningfully compared;
- Results can be translated into specific new physics models;
- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables;

What's the place of neutrino experiments in this program?

EFT at neutrino experiments

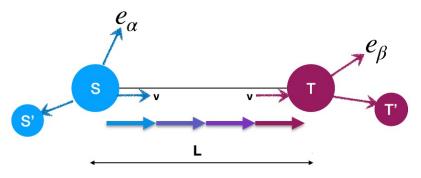
We proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, ZT, JHEP (2020)



depend on the kinematic and spin variables

$$\mathcal{M}_{\alpha k}^{P} = U_{\alpha k}^{*} A_{L}^{P} + \sum_{X} \left[\epsilon_{X} U \right]_{\alpha k}^{*} A_{X}^{P}$$
$$\mathcal{M}_{\beta k}^{D} = U_{\beta k} A_{L}^{D} + \sum_{X} \left[\epsilon_{X} U \right]_{\beta k} A_{X}^{D}$$



Observable: rate of detected events

Can the new interactions "enhance" the SM cross section/flux?

$$\sigma^{Total} = \sigma^{SM} + \varepsilon_X \sigma^{Int} + \varepsilon_X^2 \sigma^{NP} \sim \sigma^{SM} (1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})$$

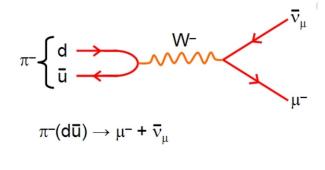
$$\phi^{Total} = \phi^{SM} + \varepsilon_X \phi^{Int} + \varepsilon_X^2 \phi^{NP} \sim \phi^{SM} (1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$$

Production

Falkowski, González-Alonso, ZT, JHEP (2020)

Due to the pseudoscalar nature of the pion, it is sensitive only to axial $(\varepsilon_L - \varepsilon_R)$ and pseudo-scalar (ε_P) interactions.

$$p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = \left(-\frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)},\right)$$
 $p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}^2(m_u + m_d)^2}.$
 $\sim 700!$



Larger $p_{XY} \Longrightarrow$ smaller $\epsilon!$

$$\phi^{Total} \sim \phi^{SM}(1+\varepsilon_X p_{XL}+\varepsilon_X^2 p_{XX})$$

Huge overall flux normalization for pion decay!

$$\langle 0| \, d\gamma^{\mu} \gamma_5 u \, |\pi^+(p_{\pi})\rangle = i p_{\pi}^{\mu} f_{\pi}$$

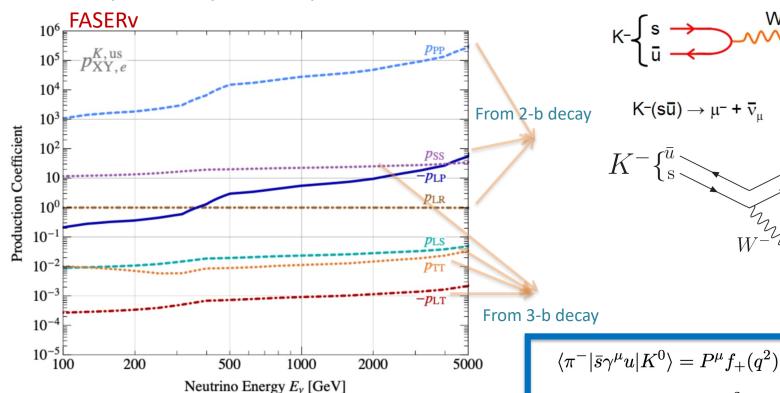
$$\langle 0 | \bar{d}\gamma^{\mu}\gamma_{5}u | \pi^{+}(p_{\pi}) \rangle = ip_{\pi}^{\mu}f_{\pi}$$

 $\langle 0 | \bar{d}\gamma_{5}u | \pi^{+}(p_{\pi}) \rangle = -i\frac{m_{\pi}^{2}}{m_{u} + m_{d}}f_{\pi}$

Production

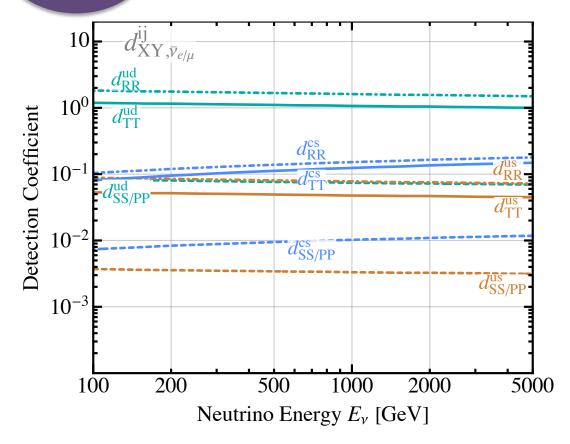
Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Both 2-body and 3-body kaon decays contribute:

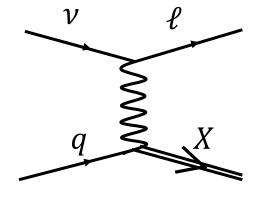


Depends on energy distribution of K^{\pm} , K_L or K_S at each experiments

$$\langle \pi^{-}|\bar{s}\gamma^{\mu}u|K^{0}\rangle = P^{\mu}f_{+}(q^{2}) + q^{\mu}f_{-}(q^{2}),$$
 $\langle \pi^{-}|\bar{s}u|K^{0}\rangle = -\frac{m_{K}^{2} - m_{\pi}^{2}}{m_{s} - m_{u}}f_{0}(q^{2}),$
 $\langle \pi^{-}|\bar{s}\sigma^{\mu\nu}u|K^{0}\rangle = i\frac{p_{K}^{\mu}p_{\pi}^{\nu} - p_{\pi}^{\mu}p_{K}^{\nu}}{m_{K}}B_{T}(q^{2}),$



Deep Inelastic Scattering



 $\sigma^{Total} \sim \sigma^{SM} (1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})$

 ${\varepsilon_X}^2$ is more important than ${\varepsilon_X}!$

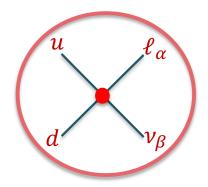
EFT at FASERV

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

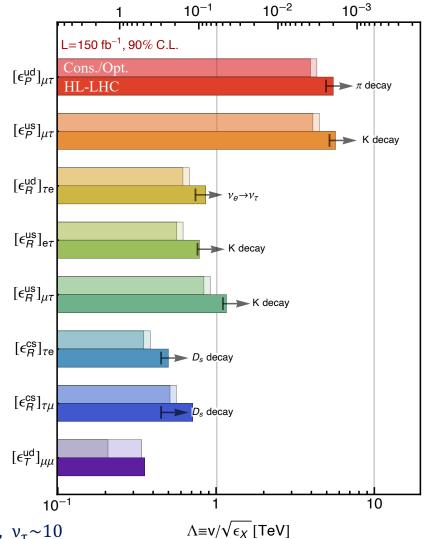
FASERy: colored bars

• Top: Conservative/Optimistic flux uncertainties

Bottom: High luminosity LHC



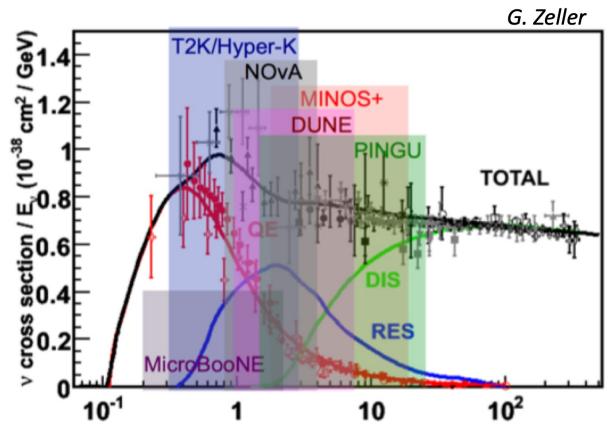
- Neutrino detectors can identify flavor: 81 operators at FASERv
- New physics reach at multi-TeV
- Complementary or dominant constraints
 - Results are statistics dominated: $\nu_e \sim 1000$, $\nu_{\mu} \sim 5000$, $\nu_{\tau} \sim 10$
 - \triangleright Optimistic systematic uncertainties: 5% on ν_e , 10% on ν_μ , 15% on ν_τ
 - \succ Conservative systematic uncertainties: 30% on ν_e , 40% on ν_μ , 50% on ν_τ



 ϵ

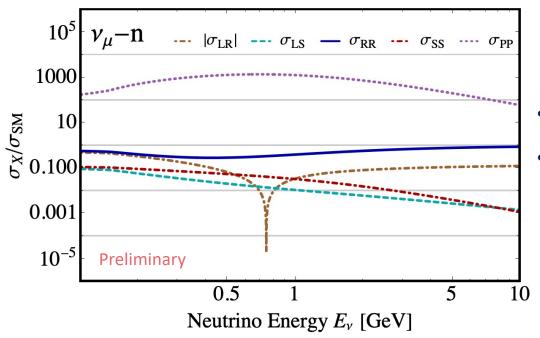
Long Baseline Accelerator Experiments

• 0.1-10 GeV energy range: cross section is much more involved!



J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

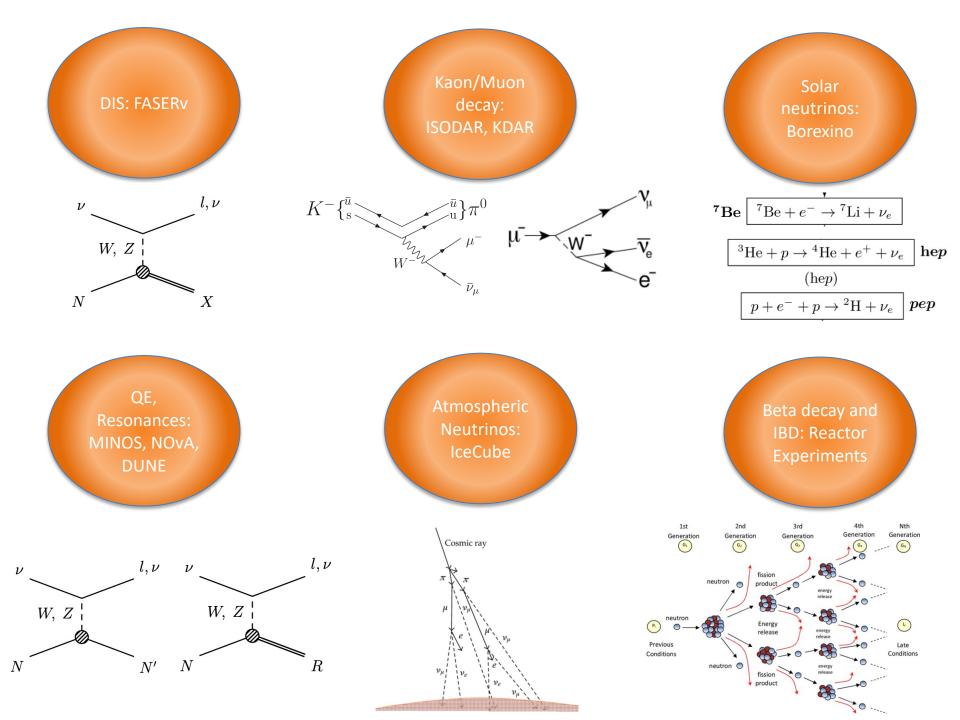
Quasi-Elastic scattering at the nucleon level



- 10³ times x-section enhancement
- Much higher statistics

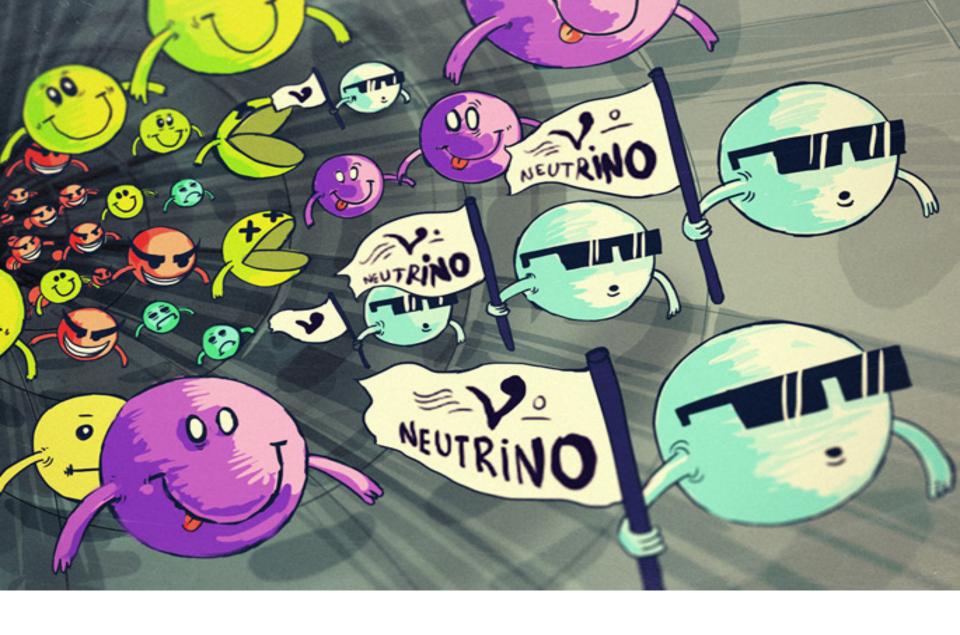
Kopp, Rocco, <u>ZT</u>, in preparation

Can neutrino experiments have access to new physics at 100 TeV scale?



Conclusion:

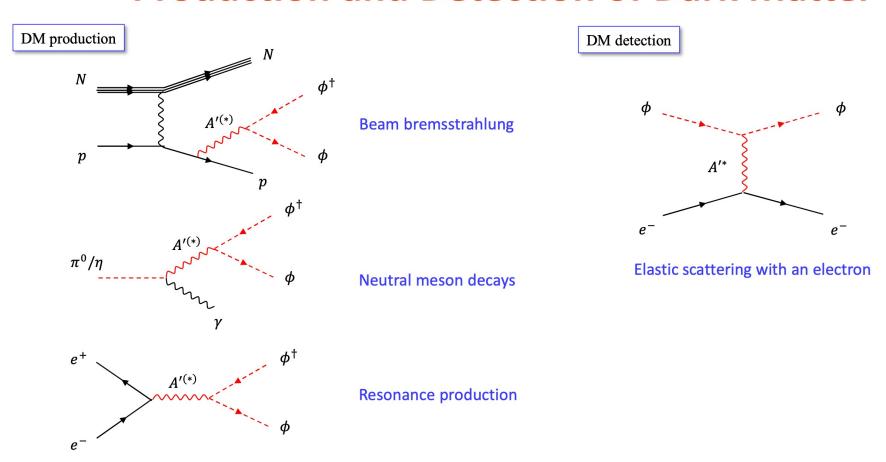
- New generation of neutrino experiments are being built to answer many unknowns in the neutrino sectors;
- We can use the near detectors to directly search for dark sector (e.g.: ALPs, light DM, etc.);
- For several BSM models, near detectors give the best constraints;
- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables using the EFT formalism;
- Unlike other probes (meson decays, ATLAS and CMS analyses, etc.) neutrino experiments have the unique capability to identify the neutrino flavor. This is crucial complementary information in case excesses are found elsewhere in the future;
- Future directions: Systematic model-independent global analyses of new physics in neutrino oscillation experiments with:
 - i) Power counting of EFT effects;
 - ii) Extraction of oscillation parameters in presence of general new physics;
 - iii) Comparison between the sensitivity of oscillation and other experiments.



Thanks for your attention

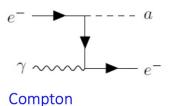
Back up Slides

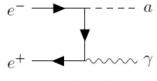
Production and Detection of Dark Matter



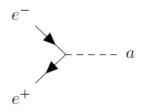
Production and Detection of ALPs

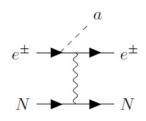
ALP production





Associated production

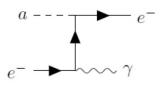


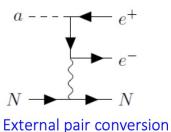


Resonant production

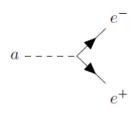
ALP-bremsstrahlung

ALP detection



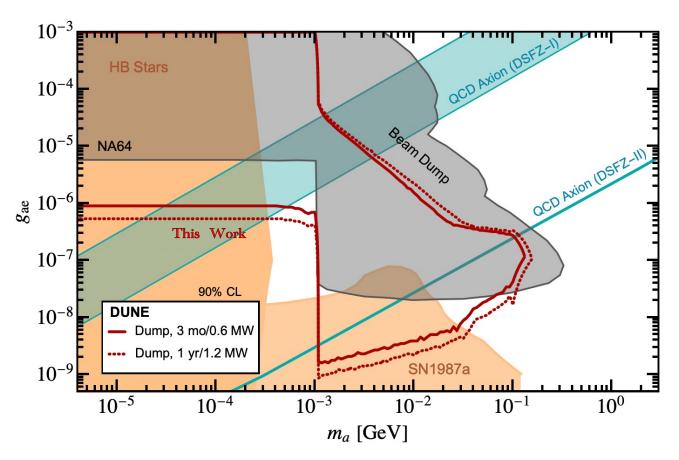


Inverse Compton



Di-lepton decay

ALPs at Neutrino Experiments



Bhattarai, Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu arXiv: 2206.06380

WEFT Power Counting

• Dim-6:
$$\frac{\Delta R}{R_{SM}} = c \ \epsilon_X^2$$

Dim-7: Cannot interfere with the SM amplitudes, suppressed!

Liao et al, JHEP 08 (2020) 162

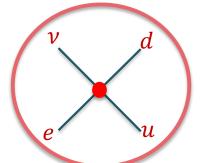
• Dim-8:
$$\frac{\Delta R}{R_{SM}} = \sqrt{c} \, \epsilon_8 \, E^2 / v^2$$

WEFT-SMEFT Matching:

Chirality conserving $(I, J = 1, 2, 3)$	Chirality violating $(I, J = 1, 2, 3)$	One flavor $(I = 1, 2, 3)$	Two flavors $(I < J = 1, 2, 3)$
$[O_{\ell q}]_{IIJJ} = (ar{\ell}_Iar{\sigma}_\mu\ell_I)(ar{q}_Jar{\sigma}^\mu q_J)$	$[O_{\ell equ}]_{IIJJ} = (ar{\ell}_I^jar{e}_I^c)\epsilon_{jk}(ar{q}_J^kar{u}_J^c)$	$O_{\ell\ell} _{IIII} = \frac{1}{2} (\bar{\ell}_I \bar{\sigma}_\mu \ell_I) (\bar{\ell}_I \bar{\sigma}^\mu \ell_I)$	$[O_{\ell\ell}]_{IIJJ} = (ar{\ell}_Iar{\sigma}_\mu\ell_I)(ar{\ell}_Jar{\sigma}^\mu\ell_J)$
$[O_{\ell q}^{(3)}]_{IIJJ} = (ar{\ell}_Iar{\sigma}_\mu\sigma^i\ell_I)(ar{q}_Jar{\sigma}^\mu\sigma^iq_J)$	$O_{\ell equ}^{(3)} _{IIJJ} = (\bar{\ell}_I^j \bar{\sigma}_{\mu\nu} \bar{e}_I^c) \epsilon_{jk} (\bar{q}_J^k \bar{\sigma}_{\mu\nu} \bar{u}_J^c)$	2	$O_{\ell\ell} _{IJJI} = (\bar{\ell}_I \bar{\sigma}_\mu \ell_J)(\bar{\ell}_J \bar{\sigma}^\mu \ell_I)$
$egin{aligned} [O_{\ell u}]_{IIJJ} &= (ar{\ell}_Iar{\sigma}_\mu\ell_I)(u_J^c\sigma^\muar{u}_J^c) \ [O_{\ell d}]_{IIJJ} &= (ar{\ell}_Iar{\sigma}_\mu\ell_I)(d_J^c\sigma^\muar{d}_J^c) \end{aligned}$	$[O_{\ell edq}]_{IIJJ} = (ar{\ell}_I^{\jmath} ar{e}_I^c) (d_J^c q_J^{\jmath})$	$[O_{\ell e}]_{IIII} = (\bar{\ell}_I \bar{\sigma}_{\mu} \ell_I) (e_I^c \sigma^{\mu} \bar{e}_I^c)$	$egin{aligned} \left[O_{\ell e} ight]_{IIJJ} &= (\ell_Iar{\sigma}_\mu\ell_I)(e_J^c\sigma^\muar{e}_J^c) \ \left[O_{\ell e} ight]_{JJII} &= (ar{\ell}_Jar{\sigma}_\mu\ell_J)(e_I^c\sigma^\muar{e}_I^c) \end{aligned}$
$[O_{eq}]_{IIJJ} = (e^c_I \sigma_\mu ar{e}^c_I) (ar{q}_J ar{\sigma}^\mu q_J)$			$ig [O_{\ell e}]_{IJJI} = (ar{\ell}_Iar{\sigma}_\mu\ell_J)(e^c_J\sigma^\muar{e}^c_I)$
$egin{aligned} [O_{eu}]_{IIJJ} &= (e^c_I \sigma_\mu ar{e}^c_I) (u^c_J \sigma^\mu ar{u}^c_J) \ [O_{ed}]_{IIJJ} &= (e^c_I \sigma_\mu ar{e}^c_I) (d^c_J \sigma^\mu ar{d}^c_J) \end{aligned}$		$[O_{ee}]_{IIII} = \frac{1}{2} (e_I^c \sigma_\mu \bar{e}_I^c) (e_I^c \sigma^\mu \bar{e}_I^c)$	$ [O_{ee}]_{IIJJ} = (e_I^c \sigma_\mu \bar{e}_I^c)(e_J^c \sigma^\mu \bar{e}_J^c)$

WEFT:
$$\mathcal{L}_{\text{eff}} \supset -\frac{2\tilde{V}_{ud}}{v^2} \left[\left(1 + \bar{\epsilon}_L^{de_J} \right) (\bar{e}_J \bar{\sigma}_\mu \nu_J) (\bar{u} \bar{\sigma}^\mu d) + \epsilon_R^{de} (\bar{e}_J \bar{\sigma}_\mu \nu_J) (u^c \sigma^\mu \bar{d}^c) \right. \\ \left. + \frac{\epsilon_S^{de_J} + \epsilon_P^{de_J}}{2} (e_J^c \nu_J) (u^c d) + \frac{\epsilon_S^{de_J} - \epsilon_P^{de_J}}{2} (e_J^c \nu_J) (\bar{u} \bar{d}^c) + \epsilon_T^{de_J} (e_J^c \sigma_{\mu\nu} \nu_J) (u^c \sigma_{\mu\nu} d) + \text{h.c.} \right]$$

Specific New Physics Models



 ϵ_L : measures deviations of the W boson to quarks and leptons, compared to the SM prediction

 ε_R : left-right symmetric SU(3)_CxSU(2)_LxSU(2)_RxU(1)_X models introduce new charged vector bosons W' coupling to right-handed quarks

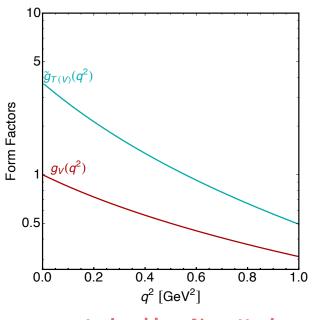
ε_{S,P,T}: In leptoquark models, new scalar particles couple to both quarks and leptons

$$\begin{array}{c|c}
L & LQ & LQ \\
\hline
Q & Q & V^2 \\
\hline
 & \epsilon_{S,P,T} \sim \frac{V^2}{m_{LQ}^2}
\end{array}$$

QE matrix elements at the nucleon level

$$\langle p(p_p) | \, \bar{u} \gamma_{\mu} d \, | n(p_n) \rangle = \bar{u}_p(p_p) \left[g_V(q^2) \, \gamma_{\mu} - i \, \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \, \sigma_{\mu\nu} q^{\nu} + \frac{\tilde{g}_S(q^2)}{2M_N} \, q_{\mu} \right] u_n(p_n)$$

$$\langle p(p_p) | \, \bar{u} \gamma_{\mu} \gamma_5 d \, | n(p_n) \rangle = \bar{u}_p(p_p) \left[g_A(q^2) \gamma_{\mu} - i \, \frac{\tilde{g}_{T(A)}(q^2)}{2M_N} \sigma_{\mu\nu} q^{\nu} + \frac{\tilde{g}_P(q^2)}{2M_N} q_{\mu} \right] \gamma_5 u_n(p_n)$$



NME 21 PACS 21 1.2 RQCD 20 PACS 18 erratum Mainz 21 ETMC 20 CalLat 21 **CLS 17** 1.0 $8.0 \begin{pmatrix} Q^2 \end{pmatrix}$ 0.60.40.20.4 0.0 0.6 0.8 1.0 Q^2/GeV^2

constrained by eN scattering

Kopp, Rocco, <u>ZT</u>, in preparation

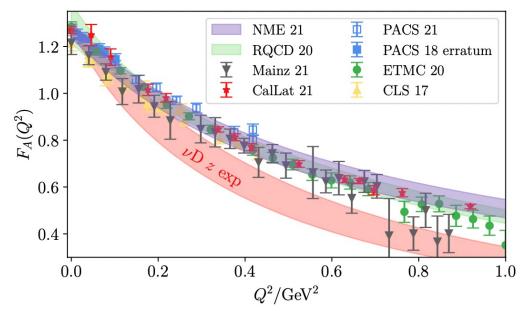
poorly constrained by expt.

Meyer et al, 2201.01839

QE matrix elements at the nucleon level

$$\langle p(p_p) | \, \bar{u} \gamma_{\mu} d \, | n(p_n) \rangle = \bar{u}_p(p_p) \left[g_V(q^2) \, \gamma_{\mu} - i \, \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \, \sigma_{\mu\nu} q^{\nu} + \frac{\tilde{g}_S(q^2)}{2M_N} \, q_{\mu} \right] u_n(p_n)$$

$$\langle p(p_p) | \, \bar{u} \gamma_{\mu} \gamma_5 d \, | n(p_n) \rangle = \bar{u}_p(p_p) \left[g_A(q^2) \gamma_{\mu} - i \, \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu} q^{\nu} + \frac{\tilde{g}_P(q^2)}{2M_N} q_{\mu} \right] \gamma_5 u_n(p_n)$$



poorly constrained by expt.

Meyer et al, 2201.01839

QE matrix elements at the nucleon level

$$\langle p(p_p) | \, \bar{u} \, d \, | n(p_n) \rangle = g_S(q^2) \, \bar{u}_p(p_p) \, u_n(p_n)$$

$$\langle p(p_p) | \, \bar{u} \, \gamma_5 \, d \, | n(p_n) \rangle = g_P(q^2) \, \bar{u}_p(p_p) \, \gamma_5 \, u_n(p_n)$$

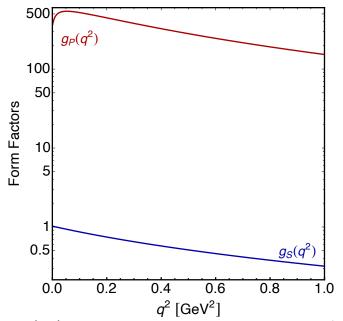
$$\langle p(p_p) | \, \bar{u} \, \sigma_{\mu\nu} \, d \, | n(p_n) \rangle = \bar{u}_p(p_p) \, \Big[g_T(q^2) \, \sigma_{\mu\nu} + g_T^{(1)}(q^2) \, (q_\mu \gamma_\nu - q_\nu \gamma_\mu)$$

$$+ g_T^{(2)}(q^2) \, (q_\mu P_\nu - q_\nu P_\mu) + g_T^{(3)}(q^2) \, \left(\gamma_\mu \not q \gamma_\nu - \gamma_\nu \not q \gamma_\mu \right) \Big] \, u_n(p_n)$$

• conservation of the vector current (CVC):

$$g_S(q^2) = rac{\delta M_N^{ ext{QCD}}}{\delta m_q} g_V(q^2) + rac{q^2/2\overline{M}_N}{\delta m_q} \widetilde{g}_S(q^2)$$

partial conservation of the axial current (PCAC):

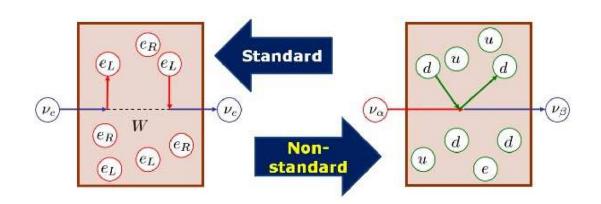


$$g_P(q^2) = rac{\overline{M}_N}{\overline{m}_q} g_A(q^2) + rac{q^2/2\overline{M}_N}{(2\overline{m}_q)} ilde{g}_P(q^2)$$

- We need axial form factor for NP as well
- Much larger statistics
- Large pseudo-scalar form factor (no q/M suppression)
- Different energy scale compare to beta decay experiments

Kopp, Rocco, **ZT**, in preparation

Neutrinos are not pure flavor states:



Standard NSI approach

NSI parameters

$$|\nu_{\alpha}^{s}\rangle = \frac{1}{N_{\alpha}^{s}} \left[|\nu_{\alpha}\rangle + \sum_{\gamma=e,\mu,\tau} \epsilon_{\alpha\gamma}^{s} |\nu_{\gamma}\rangle \right]$$

$$\langle \nu_{\beta}^{d}| = \frac{1}{N_{\beta}^{d}} \left[\langle \nu_{\beta}| + \sum_{\gamma=e,\mu,\tau} \langle \nu_{\gamma}| \epsilon_{\gamma\beta}^{d} \right]$$
Normalization

Rotation of flavor states at the source

Rotation of flavor states at the detector

Neutrinos are not pure flavor states:

$$|\nu_{\alpha}^{s}\rangle = \frac{(1+\epsilon^{s})_{\alpha\gamma}}{N_{\alpha}^{s}}|\nu_{\gamma}\rangle \ , \quad \langle\nu_{\beta}^{d}| = \langle\nu_{\gamma}|\frac{(1+\epsilon^{d})_{\gamma\beta}}{N_{\beta}^{d}}$$

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R_{\alpha\beta}^{\text{QM}} = \Phi_{\alpha}^{\text{SM}} \sigma_{\beta}^{\text{SM}} \sum_{k,l} e^{-i\frac{L\Delta m_{kl}^2}{2E_{\nu}}} [x_s]_{\alpha k} [x_s]_{\alpha l}^* [x_d]_{\beta k} [x_d]_{\beta l}^*$$

$$x_s \equiv (1 + \epsilon^s)U^* \& x_d \equiv (1 + \epsilon^d)^T U$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- Can one "validate" QM-NSI approach from the QFT results?
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation?

- Can one "validate" QM-NSI approach from the QFT results? Yes...
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation? No...

Observable is the same, we can match the two (only at the linear level)

$$\epsilon_{\alpha\beta}^s = \sum_X p_{XL}[\epsilon_X]_{\alpha\beta}^*, \quad \epsilon_{\beta\alpha}^d = \sum_X d_{XL}[\epsilon_X]_{\alpha\beta}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

Comparing QM and QFT

Only at the linear order:

Falkowski, González-Alonso, ZT, JHEP (2019)

Neutrino Process	NSI Matching with EFT	
ν_e produced in beta decay	$\epsilon_{e\beta}^s = [\epsilon_L]_{e\beta}^* - [\epsilon_R]_{e\beta}^* - \frac{g_T}{g_A} \frac{m_e}{f_T(E_\nu)} [\epsilon_T]_{e\beta}^*$	
ν_e detected in inverse beta decay	$\epsilon_{\beta e}^{d} = [\epsilon_{L}]_{e\beta} + \frac{1 - 3g_{A}^{2}}{1 + 3g_{A}^{2}} [\epsilon_{R}]_{e\beta} - \frac{m_{e}}{E_{\nu} - \Delta} \left(\frac{g_{S}}{1 + 3g_{A}^{2}} [\epsilon_{S}]_{e\beta} - \frac{3g_{A}g_{T}}{1 + 3g_{A}^{2}} [\epsilon_{T}]_{e\beta} \right)$	
$ u_{\mu} $ produced in pion decay	$\epsilon_{\mu\beta}^s = [\epsilon_L]_{\mu\beta}^* - [\epsilon_R]_{\mu\beta}^* - \frac{m_\pi^2}{m_\mu(m_u + m_d)} [\epsilon_P]_{\mu\beta}^*$	

- Different NP interactions appear at the source or detection simultaneously
- Some of the p_{XL}/d_{XL} coefficients depend on the neutrino energy
- There are chiral enhancements in some cases

These correlations, energy dependence etc. cannot be seen in the traditional QM approach.

Comparing QM and QFT

Beyond the linear order in new physics parameters, the NSI formula matches the (correct) one derived in the EFT only if the consistency condition is satisfied

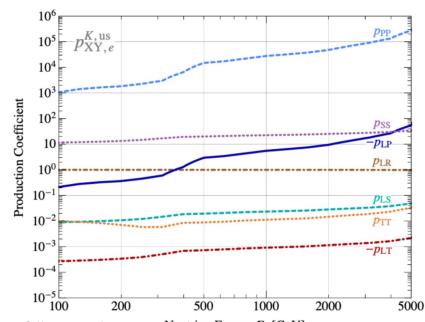
$$p_{XL}p_{YL}^* = p_{XY}, \quad d_{XL}d_{YL}^* = d_{XY}$$

This is always satisfied for new physics correcting V-A interactions only as p_{LL} = d_{LL} = 1 by definition

However for non-V-A new physics the consistency condition is not satisfied in general

Falkowski, González-Alonso, ZT, JHEP (2019)

$$p_{XY} \equiv \frac{\int d\Pi_{P'} A_X^P \bar{A}_Y^P}{\int d\Pi_{P'} |A_L^P|^2}, \quad d_{XY} \equiv \frac{\int d\Pi_D A_X^D \bar{A}_Y^D}{\int d\Pi_D |A_L^D|^2}.$$

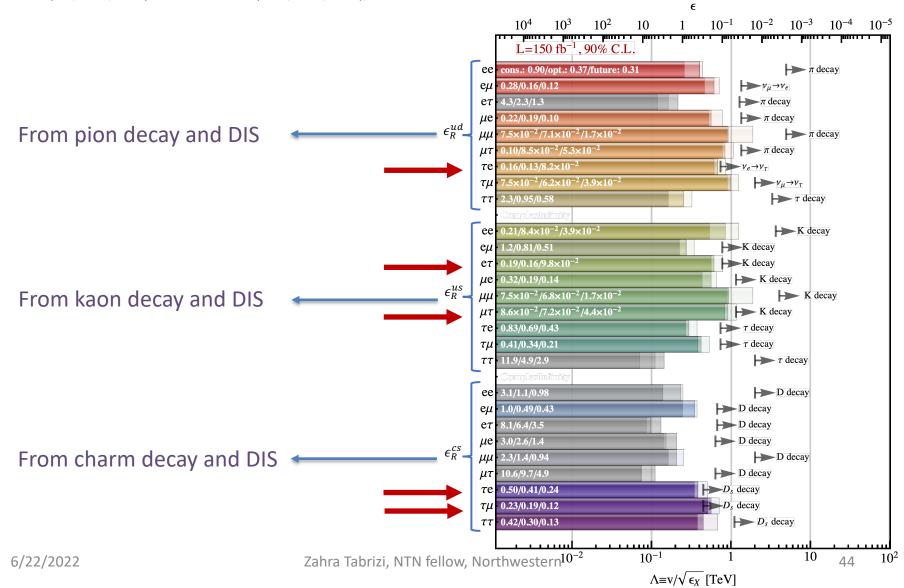


RESULTS

Turning on one interaction at a time: Right handed

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **ZT** *JHEP* 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos

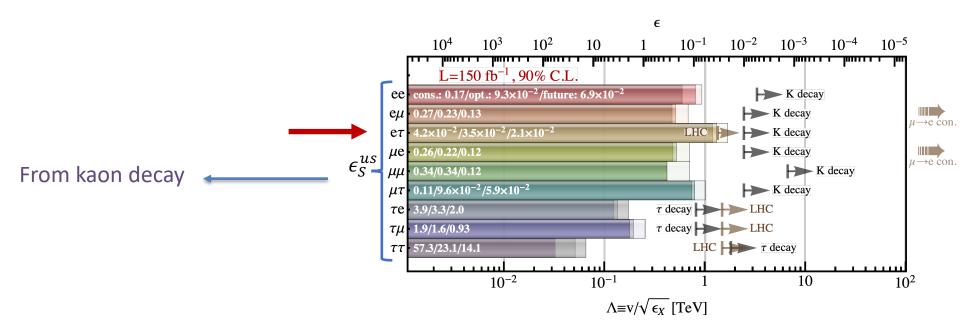


RESULTS

Turning on one interaction at a time: Scalar

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **ZT** *JHEP* 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos

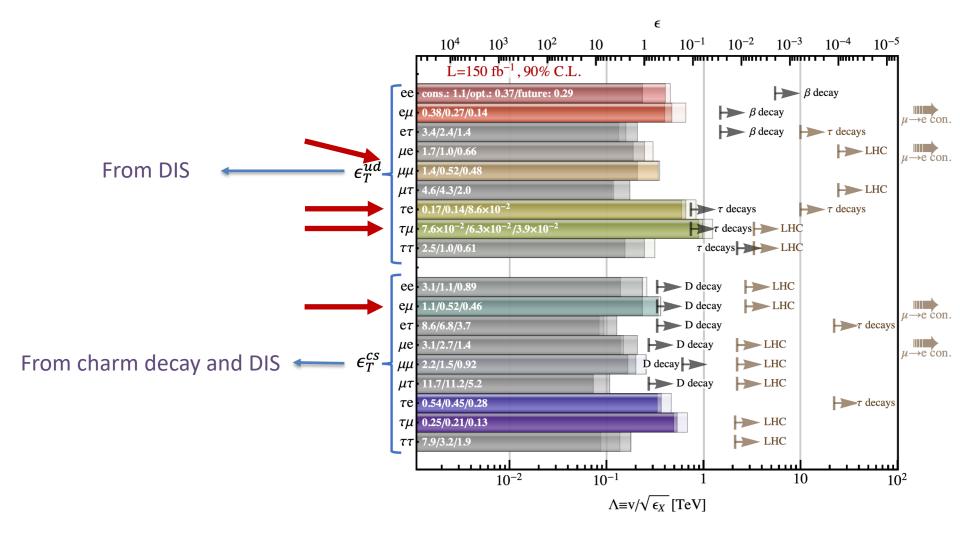


RESULTS

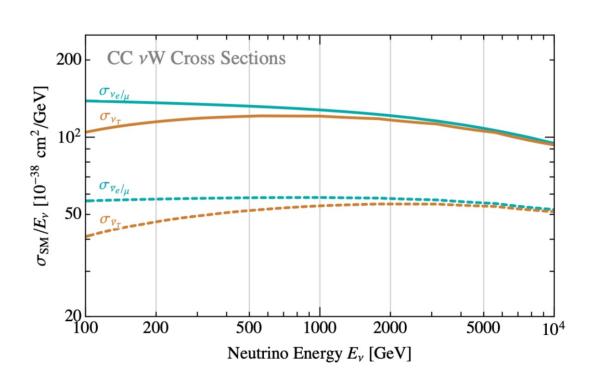
Turning on one interaction at a time: Tensor

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **ZT** *JHEP* 10 (2021) 086

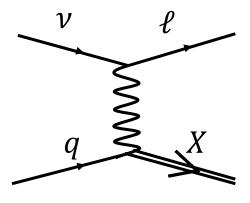
Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos



Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)



Deep Inelastic Scattering



DIS detection, easy to include NP

(compared to QE and Resonances)

Production

Falkowski, González-Alonso, Kopp, Soreq, <u>ZT</u>, JHEP (2021)

Both 2-body and 3-body kaon decays contribute:

$$f_{-}(q^2) = \frac{m_K^2 - m_\pi^2}{q^2} \left(f_0(q^2) - f_+(q^2) \right), \tag{A.9}$$

from which it also follows that $f_0(0) = f_+(0)$. For the independent form factors $f_+(q^2)$, $f_0(q^2)$ we adopt the FlaviaNet dispersive parameterization [92]:

$$f_{+}(q^{2}) = f_{+}(0) + \Lambda_{+} \frac{q^{2}}{m_{\pi}^{2}} + \mathcal{O}(q^{4}),$$

$$f_{0}(q^{2}) = f_{+}(0) + \left(\log C - G(0)\right) \frac{m_{\pi}^{2}}{m_{K}^{2} - m_{\pi}^{2}} \frac{q^{2}}{m_{\pi}^{2}} + \mathcal{O}(q^{4}), \tag{A.10}$$

where G(0) = 0.0398(44) is calculated theoretically, and $\Lambda_+ = 0.02422(116)$ as well as $\log C = 0.1998(138)$ are obtained on the lattice [93]. The $N_f = 2 + 1 + 1$ value of $f_+(0)$ according to FLAG'19 is $f_+(0) = 0.9706(27)$ [53]. For the tensor form factor we use the parameterization

$$B_T(q^2) \approx B_T(0) \left(1 - s_T^{K\pi} q^2\right),$$
 (A.11)

with $B_T(0)/f_+(0) = 0.68(3)$ and $s_T^{K\pi} = 1.10(14) \,\text{GeV}^{-2}$ [94].

EFT at FASERv

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **ZT** *JHEP* 10 (2021) 086

FASERV

Flavor Experiments

Colliders

Neutrino experiments:

Many more operators can be probed (81 at FASERv)

Low energy:

 Independent of the underlying high-energy theory

High-Energy:

- SMEFT is the underlying theory
- Bounds are less robust

Bounds shown in bold face have been calculated in this work

Coupling	Low energy (WEFT)		High energy / CLFV (SMEFT)	
	90% CL bound	process	90 % CL bound	process
$[\epsilon_P^{ud}]_{ee}$	$4.6 imes10^{-7}$	$\Gamma_{\pi o { m e} u}/\Gamma_{\pi o \mu u}$		
$[\epsilon_P^{ud}]_{e\mu}$	7.3×10^{-6}	$\Gamma_{\pi \to e\nu}/\Gamma_{\pi \to \mu\nu}$ [7]	$2.0 imes10^{-8}$	$\mu o e$ conversion
$[\epsilon_P^{ud}]_{e au}$	7.3×10^{-6}	$\Gamma_{\pi \to e\nu}/\Gamma_{\pi \to \mu\nu}$ [7]	2.5×10^{-3}	LHC [64]
$[\epsilon_P^{ud}]_{\mu e}$	$2.6 imes10^{-3}$	$\Gamma_{\pi o {f e} u}/\Gamma_{\pi o \mu u}$	$2.0 imes10^{-8}$	$\mu o e$ conversion
$[\epsilon_P^{ud}]_{\mu\mu}$	$9.4 imes 10^{-5}$	$\Gamma_{\pi o {f e} u}/\Gamma_{\pi o \mu u}$		
$[\epsilon_P^{ud}]_{\mu au}$	$2.6 imes10^{-3}$	$\Gamma_{\pi o {f e} u}/\Gamma_{\pi o \mu u}$		
$[\epsilon_P^{ud}]_{ au e}$	$9.0 imes 10^{-2}$	$\boldsymbol{\Gamma}_{\tau \to \pi \nu}$	$5.8 \times 10^{-3(*)} / 4.4 \times 10^{-4}$	LHC [65] / $ au$ decay [64]
$[\epsilon_P^{ud}]_{ au\mu}$	$9.0 imes 10^{-2}$	$\boldsymbol{\Gamma}_{\tau \to \pi \nu}$	$5.8 \times 10^{-3(*)}$	LHC [65]
$[\epsilon_P^{ud}]_{ au au}$	8.4×10^{-3}	τ -decay [65]	$5.8 \times 10^{-3(*)}$	LHC [65]
$[\epsilon_P^{us}]_{ee}$	$1.1 imes 10^{-6}$	$\Gamma_{{f K} o {f e} u}/\Gamma_{{f K} o \mu u}$		
$[\epsilon_P^{us}]_{e\mu}$	$2.1 imes 10^{-5}$	$\Gamma_{{f K} o {f e} u}/\Gamma_{{f K} o \mu u}$	$6.2 imes10^{-7}$	$\mu \to e$ conversion
$[\epsilon_P^{us}]_{e au}$	$2.1 imes 10^{-5}$	$\Gamma_{{f K} o{f e} u}/\Gamma_{{f K} o\mu u}$	7.1×10^{-2}	LHC [64]
$[\epsilon_P^{us}]_{\mu e}$	$2.3 imes10^{-3}$	$\Gamma_{{f K} o{f e} u}/\Gamma_{{f K} o\mu u}$	$6.2 imes10^{-7}$	$\mu o e$ conversion
$[\epsilon_P^{us}]_{\mu\mu}$	$2.2 imes10^{-4}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$		
$[\epsilon_P^{us}]_{\mu au}$	$2.3 imes10^{-3}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$		
$[\epsilon_P^{us}]_{ au e}$	$6.4 imes10^{-2}$	$\mathbf{\Gamma}_{ au ightarrow \mathbf{K} u}/\mathbf{\Gamma}_{\mathbf{K} ightarrow \mu u}$	$3.1 \times 10^{-2(*)}/8.1 \times 10^{-2}$	LHC (data [66])/ τ -decay [64]
$[\epsilon_P^{us}]_{ au\mu}$	$6.4 imes10^{-2}$	$\mathbf{\Gamma}_{ au ightarrow \mathbf{K} u}/\mathbf{\Gamma}_{\mathbf{K} ightarrow \mu u}$	$3.1 \times 10^{-2(*)}$	LHC (data [66])
$[\epsilon_P^{us}]_{ au au}$	$1.3 imes 10^{-2}$	τ -decay [67]	$3.1 \times 10^{-2(*)}$	LHC (data [66])
$[\epsilon_P^{cs}]_{ee}$	$4.8 imes 10^{-3}$	$\Gamma_{{ m D_s} ightarrow{ m e} u}$	1.3×10^{-2}	LHC [68]
$[\epsilon_P^{cs}]_{e\mu}$	$4.6 imes10^{-3}$	$\Gamma_{\mathbf{D_s} \rightarrow \mathbf{e}\nu}$	$1.3 \times 10^{-2} / $ 2.7 \times 10 ⁻⁶	LHC [68] / $\mu \rightarrow e$ conversion
$[\epsilon_P^{cs}]_{e au}$	$4.6 imes10^{-3}$	$\mathbf{\Gamma_{D_s \to e\nu}}$	$1.3 imes 10^{-2} \ / \ 1.9 imes 10^{-2}$	LHC / τ -decays [64, 68]
$[\epsilon_P^{cs}]_{\mu e}$	$8.9 imes 10^{-3}$	$\mathbf{\Gamma_{D_s \to \mu\nu}}$	$2.0 \times 10^{-2} / 2.7 \times 10^{-6}$	LHC [68] / $\mu \rightarrow e$ conversion
$[\epsilon_P^{cs}]_{\mu\mu}$	$1.0 imes 10^{-3}$	$\mathbf{\Gamma_{D_s \to \mu\nu}}$	2.0×10^{-2}	LHC [68]
$[\epsilon_P^{cs}]_{\mu au}$	$8.9 imes 10^{-3}$	$\Gamma_{\mathbf{D_s} \to \mu\nu}$	2.0×10^{-2}	LHC [68]
$[\epsilon_P^{cs}]_{ au e}$	$2.0 imes \mathbf{10^{-1}}$	$\mathbf{\Gamma_{D_s \to \tau \nu}}$	$1.6 imes 10^{-2} \ / \ 1.9 imes 10^{-2}$	LHC / $ au$ -decays [64]
$[\epsilon_P^{cs}]_{ au\mu}$	$2.0 imes \mathbf{10^{-1}}$	$\mathbf{\Gamma_{D_s \to \tau \nu}}$	$2.5 imes 10^{-2}$	LHC [68]
$[\epsilon_P^{cs}]_{ au au}$	$3.2 imes \mathbf{10^{-2}}$	$\mathbf{\Gamma_{D_s \to \tau \nu}}$	2.5×10^{-2}	LHC [68]