## Astrophysical neutrinos and their entanglement

A.B. Balantekin

## Neutrino Theory Network



Neutrinos from core-collapse supernovae 1987A


$$
\begin{gathered}
\cdot M_{\text {prog }} \geq 8 M_{\text {sun }} \Rightarrow \Delta E \approx 10^{53} \text { ergs } \approx \\
10^{59} \mathrm{MeV}
\end{gathered}
$$

-99\% of the energy is carried away by neutrinos and antineutrinos with $10 \leq E_{v} \leq 30 \mathrm{MeV} \Rightarrow 10^{58}$ neutrinos




Energy released in a core-collapse $\mathrm{SN}: \Delta \mathrm{E} \approx 10^{53} \mathrm{ergs} \approx 10^{59} \mathrm{MeV}$ $99 \%$ of this energy is carried away by neutrinos and antineutrinos!
~ $10^{58}$ Neutrinos!
This necessitates including the effects of $v v$ interactions!

The second term makes the physics of a neutrino gas in a core-collapse supernova a very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

## MSW oscillations

 (low neutrino density)Collective oscillations (high neutrino density)

Neutrinos forward scatter from each other

Neutrinos forward scatter from background particles

$$
\frac{\partial \rho}{\partial t}=-i[H, \rho]+C(\rho)
$$

$H=$ neutrino mixing

+ forward scattering of neutrinos off other background particles (MSW) + forward scattering of neutrinos off each other
$C=$ collisions


## The origin of elements



Neutrinos not only play a crucial role in the dynamics of these sites, but they also control the value of the electron fraction, the parameter determining the yields of the $r$ process.

Possible sites for the r-process

Understanding a core-collapse supernova requires answers to a variety of questions some of which need to be answered, both theoretically and experimentally.

Balantekin and Fuller, Prog. Part. Nucl. Phys. 71162 (2013)


## Diffuse supernova neutrino background (DSNB)



Detection of all flavors required to

- $\bar{v}_{e}$ : soon to be detected by SK + Gd, JUNO
- $V_{e}$ : posssibly detectable by DUNE
- $v_{x}$ : CEvNS detectors can improve the existing limits to almost $\overline{V_{e}}$ level

See Suliga's talk

- rule out potential non-standard scenarios
- bring us closer to understaning the supernova physics

Neutrino flavor isospin


$$
\begin{gathered}
\hat{J}_{+}=a_{e}^{\dagger} a_{\mu} \quad \hat{J}_{-}=a_{\mu}^{\dagger} a_{e} \\
\hat{J}_{0}=\frac{1}{2}\left(a_{e}^{\dagger} a_{e}-a_{\mu}^{\dagger} a_{\mu}\right)
\end{gathered}
$$

These operators can be written in either mass or flavor basis

Free neutrinos (only mixing)

$$
\begin{aligned}
\hat{H} & =\frac{m_{1}^{2}}{2 E} a_{1}^{\dagger} a_{1}+\frac{m_{2}^{2}}{2 E} a_{2}^{\dagger} a_{2}+(\cdot \cdot) \hat{1} \\
& =\frac{\delta m^{2}}{4 E} \cos 2 \theta\left(-2 \hat{J}_{0}\right)+\frac{\delta m^{2}}{4 E} \sin 2 \theta\left(\hat{J}_{+}+\hat{J}_{-}\right)+(\cdot)^{\prime} \hat{1}
\end{aligned}
$$

Interacting with background electrons

$$
\hat{H}=\left[\frac{\delta m^{2}}{4 E} \cos 2 \theta-\frac{1}{\sqrt{2}} G_{F} N_{e}\right]\left(-2 \hat{J}_{0}\right)+\frac{\delta m^{2}}{4 E} \sin 2 \theta\left(\hat{J}_{+}+\hat{J}_{-}\right)+(\cdot \cdot)^{\prime \prime} \hat{1}
$$

## Neutrino-Neutrino Interactions

Smirnov, Fuller, Qian, Pantaleone, Sawyer McKellar, Friedland, Lunardini, Raffelt, Duan, Balantekin, Volpe, Kajino, Pehlivan

$$
\hat{H}_{v v}=\frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right) \overrightarrow{\mathbf{J}}_{p} \cdot \overrightarrow{\mathbf{J}}_{q}
$$



This term makes the physics of a neutrino gas in a core-collapse supernova a genuine many-body problem
$\hat{H}=\int d p\left(\frac{\delta m^{2}}{2 E} \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{J}}_{p}-\sqrt{2} G_{F} N_{e} \mathbf{J}_{p}^{0}\right)+\frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right) \overrightarrow{\mathbf{J}} \cdot \overrightarrow{\mathbf{J}_{q}}$
$\overrightarrow{\mathbf{B}}=(\sin 2 \theta, 0,-\cos 2 \theta)$
Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

## Including antineutrinos

$$
H=H_{\nu}+H_{\bar{\nu}}+H_{\nu \nu}+H_{\bar{\nu} \bar{\nu}}+H_{\nu \bar{\nu}}
$$

Requires introduction of a second set of $\mathrm{SU}(2)$ algebras!

## Including three flavors

Requires introduction of $\mathrm{SU}(3)$ algebras.
Both extensions are straightforward, but tedious! Balantekin and Pehlivan, J. Phys. G 34, 1783 (2007).

This problem is "exactly solvable" in the single-angle approximation

$$
H=\sum_{p} \frac{\delta m^{2}}{2 p} \hat{B} \cdot \overrightarrow{J_{p}}+\frac{\sqrt{2} G_{F}}{V} \sum_{\mathbf{p}, \mathbf{q}}\left(1-\cos \vartheta_{\mathbf{p q}}\right) \overrightarrow{J_{\mathbf{p}}} \cdot \overrightarrow{J_{\mathbf{q}}}
$$

$$
\downarrow
$$

$$
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{J} \cdot \vec{\jmath}
$$

Single-angle approximation Hamiltonian:

$$
H=\sum_{p} \frac{\delta m^{2}}{2 p} J_{p}^{0}+2 \mu \sum_{\substack{p, q \\ p \neq q}} \mathbf{J}_{p} \cdot \mathbf{J}_{q}
$$

Eigenstates:

$$
\begin{aligned}
& \left|x_{i}\right\rangle=\prod_{i=1}^{N} \sum_{k} \frac{J_{k}^{\dagger}}{\left(\delta m^{2} / 2 k\right)-x_{i}}|0\rangle \\
& -\frac{1}{2 \mu}-\sum_{k} \frac{j_{k}}{\left(\delta m^{2} / 2 k\right)-x_{i}}=\sum_{j \neq i} \frac{1}{x_{i}-x_{j}}
\end{aligned}
$$

Bethe ansatz equations

$$
\mu=\frac{G_{F}}{\sqrt{2} V}\langle 1-\cos \Theta\rangle
$$

Invariants:

$$
h_{p}=J_{p}^{0}+2 \mu \sum_{\substack{p, q \\ p \neq q}} \frac{\mathbf{J}_{p} \cdot \mathbf{J}_{q}}{\delta m^{2}\left(\frac{1}{p}-\frac{1}{q}\right)}
$$

Pehlivan, ABB, Kajino, \& Yoshida Phys. Rev. D 84, 065008 (2011)

Two of the adiabatic eigenstates of this equation are easy to find in the single-angle approximation:

$$
\begin{gathered}
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{\jmath} \cdot \vec{\jmath} \\
|j,+j\rangle=|N / 2, N / 2\rangle=\left|\nu_{1}, \ldots, \nu_{1}\right\rangle \\
|j,-j\rangle=|N / 2,-N / 2\rangle=\left|\nu_{2}, \ldots, \nu_{2}\right\rangle \\
E_{ \pm N / 2}=\mp \sum_{p} \omega_{p} \frac{N_{p}}{2}+\mu \frac{N}{2}\left(\frac{N}{2}+1\right)
\end{gathered}
$$

To find the others will take a lot more work

Away from the mean-field: Adiabatic solution of the exact many-body Hamiltonian for extremal states

Adiabatic evolution of an initial thermal distribution ( $\mathrm{T}=10 \mathrm{MeV}$ ) of electron neutrinos. $10^{8}$ neutrinos distributed over 1200 energy bins with solar neutrino parameters and normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino arXiv:1805.11767 PRD98 (2018) 083002



A system of $N$ particles each of which can occupy $k$ states ( $k=$ number of flavors)

## Exact Solution <br>  <br> Mean-field approximation

Entangled and unentangled states


Only unentangled states

Dimension of Hilbert space: $\mathrm{k}^{\mathrm{N}}$
von Neumann entropy $\quad S=-\operatorname{Tr}(\rho \log \rho)$

|  | Pure State | Mixed State |
| :---: | :---: | :---: |
| Density matrix | $\rho^{2}=\rho$ | $\rho^{2} \neq \rho$ |
| Entropy | $S=0$ | $S \neq 0$ |

Pick one of the neutrinos and introduce the reduced density matrix for this neutrino (with label "b")

$$
\tilde{\rho}=\rho_{b}=\sum_{a, c, d, \ldots}\left\langle v_{a}, v_{c}, v_{d}, \cdots\right| \rho\left|v_{a}, v_{c}, v_{d}, \cdots\right\rangle
$$

Entanglement entropy

$$
\begin{gathered}
S=-\operatorname{Tr}(\tilde{\rho} \log \tilde{\rho}) \\
\tilde{\rho}=\frac{1}{2}(\mathbb{I}+\vec{\sigma} \cdot \vec{P}) \\
S=-\frac{1-|\vec{P}|}{2} \log \left(\frac{1-|\vec{P}|}{2}\right)-\frac{1+|\vec{P}|}{2} \log \left(\frac{1+|\vec{P}|}{2}\right)
\end{gathered}
$$




Initial state: all electron neutrinos

Note: S = 0 for meanfield approximation

Cervia, Patwardhan, Balantekin,
Coppersmith, Johnson,
arXiv:1908.03511
PRD, 100, 083001 (2019)

- Bethe ansatz method has numerical instabilities for larger values of N . However, it is very valuable since it leads to the identification of conserved quantities.
- For this reason, we also explored the use of Runge Kutta and tensor network techniques. This was both to check Bethe ansatz results for N less than 10 and to explore the case with N larger than 10.


Cervia, Patwardhan, Balantekin, Coppersmith, Johnson, arXiv:1908.03511
PRD 100, 083001 (2019)

Patwardhan, Cervia, Balantekin, arXiv:2109.08995
PRD 104, 123035 (2021)


Mean Field: $\rho=\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{N}$

$$
\begin{equation*}
\omega_{A}=\frac{\delta m^{2}}{2 E_{A}} \tag{Tr}
\end{equation*}
$$

## Mean-field evolution

$$
\begin{aligned}
& \frac{\partial}{\partial t} \mathrm{P}^{(A)}=\left(\omega_{A} \mathcal{B}+\mu \mathrm{P}\right) \times \mathrm{P}^{(A)} \\
& \mathrm{P}=\sum_{A} \mathrm{P}^{(A)} \\
& \frac{\partial}{\partial t} \mathrm{P}=\mathcal{B} \times\left(\sum_{A} \omega_{A} \mathrm{P}^{(A)}\right)
\end{aligned}
$$

$\mathcal{B} \cdot \mathrm{P}$ is a constant of motion.

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathrm{P}^{(A)}= & \left(\omega_{A} \mathcal{B}+\mu \mathrm{P}\right) \times \mathrm{P}^{(A)} \\
\mathrm{P} & =\sum_{A} \mathrm{P}^{(A)}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}^{(A)} & =\alpha_{A} \mathcal{B}+\beta_{A} \mathrm{P}+\gamma_{A}(\mathcal{B} \times \mathrm{P}) \\
\sum_{A} \alpha_{A} & =0, \quad \sum_{A} \beta_{A}=1, \quad \sum_{A} \gamma_{A}=0 .
\end{aligned}
$$

If initially all $N$ neutrinos have the same flavor, then in the mass basis would be $\alpha_{0}=0, \beta_{0}=1 / N$, and $\gamma_{0}=0$.

$$
\frac{\partial}{\partial t} \mathrm{P}=\left(\sum_{A} \beta_{A} \omega_{A}\right)(\mathcal{B} \times \mathrm{P})+\left(\sum_{A} \gamma_{A} \omega_{A}\right)[(\mathcal{B} \cdot \mathrm{P}) \mathcal{B}-\mathrm{P}]
$$

Adopt for the mass basis and define $\Gamma=\left(\sum_{A} \gamma_{A} \omega_{A}\right)$. Unless $\Gamma$ is positive the solutions for $P_{x}$ and $P_{y}$ exponentially grow.

$$
\begin{gathered}
P_{x, y}=\Pi_{x, y} \exp \left(-\int \Gamma(t) d t\right) \\
\frac{\partial}{\partial t} \Pi_{x}=\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{y}, \quad \frac{\partial}{\partial t} \Pi_{y}=-\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{x}
\end{gathered}
$$

$$
\begin{gathered}
P_{x, y}=\Pi_{x, y} \exp \left(-\int \Gamma(t) d t\right) \\
\frac{\partial}{\partial t} \Pi_{x}=\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{y}, \quad \frac{\partial}{\partial t} \Pi_{y}=-\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{x}
\end{gathered}
$$

In the mean-field approximation $\Pi_{x}$ and $\Pi_{y}$ precess around $\mathcal{B}$ with a time-dependent frequency (through the time-dependence of $\beta_{A} \mathrm{~s}$ ). Then $P_{x}$ and $P_{y}$ also precess similarly while decaying due to the exponential terms. Hence asymptotically $P_{x}$ and $P_{y}$ tend to be very small. Then $x$ and $y$ components of each $P^{(A)}$ are asymptotically very small. Since $\left|P^{(A)}\right|^{2}=1$ for uncorrelated neutrinos, it then follows that

$$
\left(\mathrm{P}_{z}^{(A)}\right)^{2} \sim 1
$$

asymptotically. Consequently allowed asymptotic values of $P_{z}^{(A)}$ are $\sim \pm 1$. Since the constant of motion $\sum_{A} P_{Z}^{(A)}$ (in the mass basis) is fixed by the initial conditions, some of the final $P_{z}^{(A)}$ values will be +1 and some of them will be -1 . This is the "spectral split" phenomenon. Depending on the initial conditions, there may exist
 one or more spectral splits.

We find that the presence of spectral splits is a good proxy for deviations from the mean-field results


## Probability of observing

 the first mass eigenstate starting with all $v_{e}(N=16)$| $-\cdots$ | Many-body |
| :--- | :--- | :--- |
| $\cdots$ | Mean-field |
| $\cdots$ | Entropy |
| $\cdots$ | Initial Value |



Patwardhan, Cervia, Balantekin, arXiv:2109.08995 Phys. Rev. D 104, 123035 (2021)

## Probability of observing the

 first mass eigenstate starting with $8 v_{e}$ and $8 v_{x}$ ( $\mathrm{N}=16$ )| $-\cdots$ | Many-body |
| :--- | :--- | :--- |
| $\cdots$ | Mean-field |
| $\cdots$ | Entropy |
| $\cdots$ | Initial Value |$\quad \theta=0.161$



Patwardhan, Cervia, Balantekin, arXiv:2109.08995

## Where do we go from here?

- Explore the efficacy of tensor methods utilizing invariants obtained in the Bethe ansatz approach. $\nabla$
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, arXiv: 2202.01865
- Use tensor methods to explore scaling behavior (Can you get away with smaller bond dimensions?)
Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson
- Explore the impact of using many-body solution instead of the meanfield solution in calculating element synthesis (especially $r$ - and $r p-$ process).
X. Wang, Patwardhan, Cervia, Surman, Balantekin


## Computation times:



Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, arXiv:2202.01865


Time evolution for 12 neutrinos (initially six $v_{\mathrm{e}}$ and $\operatorname{six} v_{\mathrm{x}}$ ). D is the bond dimension. The largest possible value of $D$ is $2^{6}=64$.

## CONCLUSIONS

- Calculations performed using the mean-field approximation have revealed a lot of interesting physics about collective behavior of neutrinos in astrophysical environments. Here we have explored possible scenarios where further interesting features can arise by going beyond this approximation.
- We found that the deviation of the adiabatic many-body results from the mean field results is largest for neutrinos with energies around the spectral split energies. In our single-angle calculations we observe a broadening of the spectral split region. This broadening does not appear in single-angle mean-field calculations and seems to be larger than that was observed in multi-angle mean-field calculations (or with BSM physics).
- This suggests hybrid calculations may be efficient: many-body calculations near the spectral split and mean-field elsewhere.
- There is a strong dependence on the initial conditions.

Thank you very much!

