Electrons-4-Neutrinos: Trailblazing the Precision Oscillations Era

Or Hen (MIT)

For the Electrons-4-Neutrinos & CLAS collaborations

Measuring Neutrinos for Oscillations

Or... the Nuclear Reality of Oscillation Measurements

Oscillations study in practice:

$$N_{lpha}(E_{rec},L) = \sum_{i} \int \Phi_{lpha}(E,L) \sigma_{i}(E) f_{\sigma_{i}}(E,E_{rec}) dE$$

Measure | Want | Theory Input | [flux] | (5) - 6 - 11 - 11 | (7) - 6 - 11 - 11 | (8) - 11 | (15) - 12 | (15) - 12 - 11 | (15) - 12 | (15)

 $\sigma(E)$: Scattering cross-section

 $f_{\sigma}(E, E_{\text{rec}})$: Energy reconstruction smearing matrix

$$N_{\alpha}(E_{rec}, L) = \sum_{i} \int \Phi_{\alpha}(E, L) \underline{\sigma_{i}(E) f_{\sigma_{i}}(E, E_{rec})} dE$$

Theory Input:

- Complex models; Implemented in event-generators
- Often effective, empirical, semi-classical, ...

→ MUST TUNE TO DATA!

$$N_{\alpha}(E_{rec}, L) = \sum_{i} \int \Phi_{\alpha}(E, L) \underline{\sigma_{i}(E) f_{\sigma_{i}}(E, E_{rec})} dE$$

Near Detector data:

- No oscillations @ L ≈ 0
- $\phi(E, L \approx 0)$ generally known
- \rightarrow Provide good $\sigma(E)$ & $f_{\sigma}(E, E_{rec})$ integral constraint

$$N_{\alpha}(E_{rec}, L) = \sum_{i} \int \Phi_{\alpha}(E, L) \underline{\sigma_{i}(E)} f_{\sigma_{i}}(E, E_{rec}) dE$$

Near Detector data:

- No oscillations @ L ≈ 0
- $\phi(E, L \approx 0)$ generally known
- \rightarrow Provide good $\sigma(E) \& f_{\sigma}(E, E_{rec})$ integral constraint

But... near flux ≠ far flux

Interaction modeling is a leading systematic in oscillation experiments

Need external constraints!

Our Approach: Use Electron Scattering Data!

- e & ν interact similarly
- Many nuclear effects identical (FSI, multi-N effects, ...).
- e beam energy is known
- Test ν event generators by running in e-mode (turn off axial response, scale for propagator mass)

- \checkmark e & ν interact similarly
- Many nuclear effects identical (FSI, multi-N effects, ...).
- e beam energy is known
- Test ν event generators by running in e-mode (turn off axial response, scale for propagator mass)

e & ν interact similarly

2.26 GeV on ¹²C.

 $1p0\pi$ events, $\theta_{lepton} > 15^{\circ}$.

Papadopoulou and Ashkenazi et al (e4v collaboration) Phys. Rev. D **103**, 113003 (2021).

*e⁻ scaled by Q⁴

- \checkmark e & ν interact similarly
- ✓ Many nuclear effects identical (FSI, multi-N effects, ...)
- e beam energy is known
- Test ν event generators by running in e-mode (turn off axial response, scale for propagator mass)

- \checkmark e & ν interact similarly
- ✓ Many nuclear effects identical (FSI, multi-N effects, ...)
- ✓ e beam energy is known
- Test ν event generators by running in e-mode (turn off axial response, scale for propagator mass)

- \checkmark e & ν interact similarly
- ✓ Many nuclear effects identical (FSI, multi-N effects, ...)
- ✓ e beam energy is known
- Test ν event generators by running in e-mode (turn off axial response, scale for propagator mass)

- Any model must work for electrons, or it won't work for neutrinos!
 - (FSI, multi-N effects, ...)
- ✓ e beam energy is known
- Test ν event generators by running in e-mode (turn off axial response, scale for propagator mass)

Pav @ Jefferson-Lab

- ♦ low thresholds:
 - $P_p > 300 \text{ MeV/c}$
 - $P_{\pi} > 150 \text{ MeV/c}$
- ♦ Neutral particles:
 - EM calorimeter (10 ~ 60°)
 - TOF (10 ~ 140°)
- ♦ ⁴He, C, Fe Targets
- \Leftrightarrow E_{beam} = 1.1, 2.2, 4.4 GeV

clos Coverage

 $p_{min} \approx 300 \text{ MeV/c}$

 $\varphi[\text{Deg.}]$

<u>Goal:</u> Study E_{beam} reconstruction & vector-current crosssections for different energies / nuclei

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e-N}/\sigma_{\nu-N}$ (Q⁴),
- Analyze as 'neutrino data' (not using E_{beam}),
- Reconstruct E_{beam} and measure cross-sections,
- Compare to theory predictions.

<u>Goal:</u> Study E_{beam} reconstruction & vector-current crosssections for different energies / nuclei

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e-N}/\sigma_{\nu-N}$ (Q⁴),
- Analyze as 'neutrino data' (not using E_{beam}),
- Reconstruct E_{beam} and measure cross-sections,
- Compare to theory predictions.

<u>Goal:</u> Study E_{beam} reconstruction & vector-current crosssections for different energies / nuclei

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e-N}/\sigma_{\nu-N}$ (Q⁴),
- Analyze as 'neutrino data' (not using E_{beam}),
- Reconstruct E_{beam} and measure cross-sections,
- Compare to theory predictions.

<u>Goal:</u> Study E_{beam} reconstruction & vector-current crosssections for different energies / nuclei

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e-N}/\sigma_{\nu-N}$ (Q⁴),
- Analyze as 'neutrino data' (not using E_{beam}),
- Reconstruct E_{beam} and measure cross-sections,
- Compare to theory predictions.

<u>Goal:</u> Study E_{beam} reconstruction & vector-current crosssections for different energies / nuclei

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e-N}/\sigma_{\nu-N}$ (Q⁴),
- Analyze as 'neutrino data' (not using E_{beam}),
- Reconstruct E_{beam} and measure cross-sections,
- Compare to theory predictions.

<u>Goal:</u> Study E_{beam} reconstruction & vector-current crosssections for different energies / nuclei

- Select 'clean' (e,e'p) events (no π , 2nd p, ...),
- Reweight by $\sigma_{e-N}/\sigma_{\nu-N}$ (Q⁴),
- Analyze as 'neutrino data' (not using E_{beam}),
- Reconstruct E_{beam} and measure cross-sections,
- Compare to theory predictions.

Adding Radiation to GENIE

Papadopoulou et al., (e4v collaboration), PRD (2021)

Excluding Radiation in data

Excluding Radiation in data

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions
- 4. Do the same for 2p, 3p 2p+ π etc.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- Rotate π around q to determine its acceptance,
- Subtract (e,e'p π) contributions
- Do the same for 2p, 3p 2p+ π etc.

Systematics

Source	Uncertainty (%)
Detector acceptance Identification cuts $\phi_{q\pi} \text{ cross section dependence }$ Number of rotations	2,2.1,4.7 (@ 1.1,2.2,4.4 GeV)
Sector dependence	6
Acceptance correction	2-15
Overall normalization	3
Electron inefficiency	2

Kinematic Energy Reconstruction

Cherenkov detectors:

Assuming QE interaction

Using lepton only

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l| \cos \theta_l)}$$

Sanity Check: inclusive cross-sections

¹²C(e,e')_{0π} Data-Theory Disagreements

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |\mathbf{k}_l|\cos\theta_l)}$$
 33

Calorimetric Energy Reconstruction

Tracking detectors:

Calorimetric sum

Using All detected particles

$$E_{cal} = E_l + T_p + \epsilon$$

¹²C(e,e'p) Energy Reconstruction

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

$$E_{cal} = E_l + T_p + \epsilon$$

Worse for higher energy; Similar for A = 12 & 56

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

$$E_{cal} = E_l + T_p + \epsilon$$

Transverse Constraints

$$P_{T} = | P_{T}^{e'} + P_{T}^{p} |$$

Overestimation of QE peak & RES tail

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

Impacts E_{beam} reconstruction

Khachatryan, Papadopoulou, and Ashkenazi et al. (CLAS & e4v collaborations), Nature **599**, 565 (2021).

Benchmarking new generators! (ACHILLES)

Isaacson, Jay, Lovato, Machado, and Rocco arXiv: 2205.06378 (2022)

LOTS of new results!

- Multi-differential
- Pion production
- p & π transparency
- Complex variables
- ...[all nuclei & beams]

+ New CLAS12 Pav data

2.261 GeV

Example: 2D Transverse Variables

Example: 2D Transverse Variables

Low- α_T

QE Enhanced region
→ Sensitive to ground-state model

High- α_T

Large non-QE contributions

Example: 2D Transverse Variables

Low- α_T

QE Enhanced region → Sensitive to ground-state model

High- α_T

Large non-QE contributions

Complements 'sister' neutrino analysis

Newly Measured CLAS-12 data

Targets:

⁴He, ¹²C, ¹⁶O, ⁴⁰Ar, ¹²⁰Sn

Beam Energies:

1, 2, 4, 6 GeV

New Paradigm for Precision Oscillation Studies

Summary

- QE-like data available for comparison and constraints
- Double differential & pion data coming (very) soon
- Theorists & model builder encouraged to also use electron data!
- www.e4nu.com

We welcome new collaborators!

Backup Slides

Cross-Section Extraction

- Subtract backgrounds
- Scale counts by luminosity
- Correct for detector acceptance & radiation

Systematic uncertainties on each correction plus variation among detector sectors

Hall A@ JLab H(e,e'p) @ 4.32 GeV

Well defined signal definition: Min θ_e Cut

@ 1.1 GeV:
$$\theta = 17 + 7 / P$$

@
$$2.2 \text{ GeV}$$
: $\theta = 16 + 10.5 / P$

• We do not acceptance correct below min θ

$$@ 4.4 \text{ GeV}: \theta = 13.5 + 15 / P$$

See backup for p / $\pi^{+/-}$

definitions

Well defined signal definition: Min θ_e Cut

@ 1.1 GeV:
$$\theta = 17 + 7 / P$$

• We do not acceptance correct below min θ

@ 2.2 GeV: $\theta = 16 + 10.5 / P$

@ 4.4 GeV: $\theta = 13.5 + 15 / P$

Background Subtraction

Non-(e,e'p) interactions lead to multi-hadron final states Gaps can make them look like (e,e'p) events

Data Driven Correction

Non-(e,e'p) interactions lead to multi-hadron final states Gaps make them look like (e,e'p) events

- Use measured (e,e'p π) events
- Rotate p, π around q to determine π detection efficiency
- Subtract undetected (e,e'p π)
- Repeat for higher hadron multiplicities

Data Driven Correction

Non-(e,e'p) interactions lead to multi-hadron final states Gaps can make them look like (e,e'p) events

- Use measured (e,e'p π) events
- Rotate p, π around q to determine π detection efficiency
- Subtract for undetected (e,e'p π)
- Repeat for higher hadron multiplicities (2p, 3p, 2p+1 π , ...)

Subtraction Effect

Systematics: Sector Dependence

Systematics: Sector Dependence

Systematics: Sector Dependence

Quantifying uncertainty by using unweighted variance & by subtracting variance from statistical uncertainty

- Playing this game across all nuclei & energies
- Division by $\sqrt{N}_{\text{sectors}}$
- Flat uncertainty of 6%

Closure Test

- Use GENIE files
- Filter specific topologies (e.g. $1p0\pi p + 1p1\pi$)
- Subtracted & True $1p0\pi$ are in good agreement

1st e4v Submission

Calorimetric energy reconstruction using the $1p0\pi$ channel

- Area normalized results
- No information with respect to absolute scale
- G2018 offset potentially due to binding energy issue

```
+Data
-SuSav2 (Total)
-QE -MEC
-RES-DIS
--G2018
```

Step #2: Normalized Yield

Data

- Divide # events by integrated charge & target thickness to get xsec in μb
- Divide by bin width to get μb/GeV

Simulation

- Get GENIE total cross section for E_e / target A & Q2 > Q2_{min}
- xsec = (Selected detected events / all generated events) * total xsec / bin width

No corrections for CLAS acceptance or for bremsstrahlung radiation

Step #2: Normalized Yield

- Absolute scale comparison
- Small effect @ 1GeV

```
† Data−SuSav2 (Total)−QE −MEC−RES −DIS--G2018
```

Step #3a: Acceptance Correction

- Start from reco / true ratio w/o radiation to obtain acceptance correction
- Average on a bin-by-bin basis x = |SuSav2 + G2018| / 2
- Due to offset, G2018 Ecal predictions have been shifted by 10/25/36 MeV for 4He/12C/56Fe respectively

Step #3a: Example 12C @ 1.1 GeV

Step #3b: Radiation Correction

Use ratio of red / blue to correct for radiation

Averaged Acceptance Correction Uncertainty Over True Beam Energy

On a bin-by-bin basis

$$x = |SuSav2 - G2018| / Sqrt(12)$$

Bin Entry = x / Average * 100 %

Same recipe as for acceptance correction but, to avoid infinities, will use average (1 bin) around the peak and average(reco) / average(true) for correction factor

Excluding Radiation

Correction Factors

Step #4: Absolute Cross Sections

After both acceptance & radiation corrections, without systematics yet

Sanity Check: (e,e') cross-sections

Systematics

Source	Uncertainty (%)		
Detector acceptance Identification cuts $\phi_{q\pi} \text{ cross section dependence}$ Number of rotations	2,2.1,4.7 (@ 1.1,2.2,4.4 GeV)		
Sector dependence	6		
Acceptance correction	2-15		
Overall normalization	3		
Electron inefficiency	2		

Energy Reconstruction Accuracy

		1.159 GeV		$2.257~{ m GeV}$		$4.453~{ m GeV}$	
		Peak	Peak	Peak	Peak	Peak	Peak
		Fraction	Sum $[\mu b]$	Fraction	Sum $[\mu b]$	Fraction	Sum $[\mu b]$
⁴ He	Data	-	-	41	0.48	38	0.15
	SuSAv2	-	-	45	1.31	22	0.14
	G2018	-	-	39	0.93	24	0.16
¹² C	Data	39	4.13	31	1.26	32	0.34
	SuSAv2	44	5.33	27	1.76	12	0.20
	G2018	51	6.53	37	2.44	23	0.43
⁵⁶ Fe	Data	-	-	20	3.73	23	1.01
	SuSAv2	-	-	21	5.28	10	0.58
	G2018	-	-	30	8.22	19	1.48

E_{QE} Nucleus & Energy Dependence

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$

A.Papadopoulou, et al, In preparation

P_T Nucleus & Energy Dependence

δα_T Nucleus & Energy Dependence

δφ_T Nucleus & Energy Dependence

Into The 3D e4v Multiverse!

A.Papadopoulou, et al, In preparation

Nuclear Sensitivity Variables

$$\delta p_{T_x} = (\widehat{p}_v \times \widehat{p}_T^l) \cdot \delta \overrightarrow{p}_T = |\delta \overrightarrow{p}_T| \sin(\delta \alpha_T)$$
Sensitivity to Fermi motion

Sensitivity to final state interactions

A.Papadopoulou, et al, In preparation

Missing Momentum Approximation

$$A.$$
Papadopoulou, et al, In preparation

$$ho_{n, proxy} = \sqrt{\delta p_L^2 + \delta p_T^2}$$

Under QE assumption

Phys. Rev. Lett. 121, 022504 (2018)

Fails To Reproduce True Missing Momentum

A.Papadopoulou, et al, In preparation

$$ho_{
m n,proxy} = \sqrt{\delta p_{
m L}^2 + \delta p_{
m T}^2}$$

Under QE assumption

Phys. Rev. Lett. 121, 022504 (2018)

True missing momentum

$$P_{miss} = |p - q|$$

p = proton 3-vector

q = momentum transfer

Issues Identified & Fixed In G2018

SuSav2 Offers More Accurate Prediction

Probing The Neutrino Phase-Space With Electrons

83

Consistent Treatment Of MEC Events With SuSav2

Unique chance to constraint one of least understood interaction channels

Inclusive C cross sections

Inclusive C/Fe cross sections

Energy Transfer [GeV]

Energy Transfer [GeV]

Inclusive H cross sections

Q⁴ Scaling Effect

SuSav2 Configuration / GEM21_11b_00_000

	Electrons	Neutrinos
QE	SuSav2	SuSav2
MEC	SuSav2	SuSav2
RES	Berger-Sehgal	Berger-Sehgal
DIS	AGKY	AGKY
FSI	hN2018	hN2018
Nuclear Model	Relativistic Mean Field	Relativistic Mean Field

G2018 Model Configuration

	Electrons	Neutrinos
QE	Rosenbluth	Nieves
MEC	Empirical	Nieves
RES	Berger-Sehgal	Berger-Sehgal
DIS	AGKY	AGKY
FSI	hA2018	hA2018
Nuclear Model	Local Fermi Gas	Local Fermi Gas