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Measuring Neutrinos for Oscillations

Or… the Nuclear Reality of Oscillation 
Measurements
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Theory Input
𝜎(E): Scattering cross-section

f𝜎(E, Erec): Energy reconstruction   
smearing matrix

Oscillations study in practice:
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• Complex models; Implemented in event-generators

• Often effective, empirical, semi-classical, …

Þ MUST TUNE 
TO DATA!

Theory Input:

4



5

Near Detector data: 
• No oscillations @ L ≈ 0
• ɸ(E, L ≈ 0) generally known
è Provide good 𝜎(E) & f𝜎(E, Erec) integral constraint



But... near flux ≠ far flux

Interaction modeling is 
a leading systematic in
oscillation experiments

Need external constraints!0   2        4        6   8    10
Ev [GeV]

Near
Det.
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ux
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.]

Far    
Det.
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Near Detector data: 
• No oscillations @ L ≈ 0
• ɸ(E, L ≈ 0) generally known
è Provide good 𝜎(E) & f𝜎(E, Erec) integral constraint



Our Approach:
Use Electron Scattering Data!

• e & 𝜈 interact similarly

• Many nuclear effects identical 
(FSI, multi-N effects, …).

• e beam energy is known 

• Test 𝜈 event generators by running in e-mode 
(turn off axial response, scale for propagator mass)
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ü e & 𝜈 interact similarly

• Many nuclear effects identical 
(FSI, multi-N effects, …).

• e beam energy is known 

• Test 𝜈 event generators by running in e-mode 
(turn off axial response, scale for propagator mass)

Electron Scattering Data
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2.26 GeV on 12C.  

1𝑝0𝜋 events,
𝜃!"#$%& > 15∘.

e & 𝜈 interact similarly

Papadopoulou and Ashkenazi et al 
(e4ν collaboration) Phys. Rev. D 103, 113003 (2021). *e- scaled by Q4 9
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ü e & 𝜈 interact similarly.

ü Many nuclear effects identical 
(FSI, multi-N effects, …)

ü e beam energy is known 

è Test 𝜈 event generators by running in e-mode 
(turn off axial response, scale for propagator mass)

Electron Scattering Data

Any model must work for electrons,
or it won’t work for neutrinos!
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@ Jefferson-Lab

A CB

D
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² Large acceptance (10 ~ 140o)

² low thresholds:
§ Pp > 300 MeV/c
§ P𝜋 > 150 MeV/c

² Neutral particles: 
§ EM calorimeter (10 ~ 60o) 
§ TOF (10 ~ 140o)

² 4He, C, Fe Targets

² Ebeam = 1.1, 2.2, 4.4 GeV



𝑝"#$ ≈ 300 MeV/c 𝑝"#$ ≈ 150 MeV/c

CLAS-6 Coverage



Playing the Neutrino Game

Goal: Study Ebeam reconstruction & vector-current cross-
sections for different energies / nuclei

Means (QE study):

• Select ‘clean’ (e,e'p) events (no 𝜋, 2nd p, ...),

• Reweight by 𝜎e-N / 𝜎𝝂 -N (Q4), 

• Analyze as ‘neutrino data’ (not using Ebeam),

• Reconstruct Ebeam and measure cross-sections,

• Compare to theory predictions.
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Adding Radiation to GENIE

JLab Hall-A 
1H(e,e’p)

Papadopoulou et al., (e4ν
collaboration), PRD (2021)



𝛾 from 𝜋. 𝛾 from 𝜋.

𝛾 from Batman

Radiated 𝛾

Excluding Radiation in data



𝛾 from 𝜋. 𝛾 from 𝜋.

Radiated 𝛾

Excluding Radiation in data
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Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

p

𝜋

Non-1p0𝜋 Background Subtraction
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(e,e'pπ )
e

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

Data Driven Correction:
1. Use measured (e,e’p𝜋) events,
2. Rotate 𝜋 around q to

determine its acceptance,
3. Subtract (e,e’p𝜋) contributions

Non-1p0𝜋 Background Subtraction
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0     1     2      3

Nπ ±N p

0     1     2      3

pion multiplicityProton multiplicity

Data Driven Correction:
1. Use measured (e,e’p𝜋) events,
2. Rotate 𝜋 around q to

determine its acceptance,
3. Subtract (e,e’p𝜋) contributions
4. Do the same for 2p, 3p 2p+ 𝜋 etc.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

(e,e'pπ )
e

Non-1p0𝜋 Background Subtraction
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0     1     2      3

Nπ ±N p

0     1     2      3

pion multiplicityProton multiplicity

Data Driven Correction:
1. Use measured (e,e’p𝜋) events,
2. Rotate 𝜋 around q to

determine its acceptance,
3. Subtract (e,e’p𝜋) contributions
4. Do the same for 2p, 3p 2p+ 𝜋 etc.

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e’p) events.

No cuts

No det. 𝜋/𝛾

subtract 𝜋/𝛾

True 0𝜋 event sample!

Non-1p0𝜋 Background Subtraction
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Systematics



Kinematic Energy Reconstruction
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Sanity Check: inclusive cross-sections

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).



12C(e,e’)0π Data-Theory Disagreements

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021). 33



Calorimetric Energy Reconstruction
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12C(e,e’p) Energy Reconstruction

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021). 35



36
Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).

Worse for higher energy; 
Similar for A = 12 & 56
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Transverse Constraints

Overestimation of 
QE peak & RES tail 

PT = | PT
e’ + PT

p |

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021). 37



Impacts Ebeam reconstruction

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021). 38



Benchmarking new 
generators! (ACHILLES)

Isaacson, Jay, Lovato, Machado, and Rocco
arXiv: 2205.06378 (2022) 39

First step: only QE & FSI
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LOTS of new results!
Preliminary

Preliminary

ECal = Ee’ + Eπ + Tp [GeV]

Preliminary

(e,e’)

Preliminary

• Multi-differential
• Pion production
• p & π transparency
• Complex variables
• …

[all nuclei & beams]

+ µ4ν

+ New CLAS12          data

@

Preliminary



Example: 2D Transverse Variables

Low-αT High-αT
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Preliminary Preliminary



QE Enhanced region
è Sensitive to ground-state model Large non-QE contributions

Low-αT High-αT

Example: 2D Transverse Variables
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Preliminary Preliminary



QE Enhanced region
è Sensitive to ground-state model

Low-αT

Example: 2D Transverse Variables
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Large non-QE contributions

High-αT

PreliminaryPreliminary



Complements ‘sister’ neutrino analysis

e-

44



Newly Measured CLAS-12 data
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Targets: 
4He, 12C, 16O, 40Ar, 120Sn

Beam Energies: 
1, 2, 4, 6 GeV



e-scattering

Event-Generators

𝛎-scattering

New Paradigm for Precision Oscillation Studies

𝜈 A

46

PRD 103, 113003 (2021)

Nature 599, 565 (2021) PRL 125, 201803 (2020)

+ Many works for other groups / collaborations!
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Summary

+
We welcome new 

collaborators!

?

• QE-like data available for 
comparison and constraints

• Double differential & pion 
data coming (very) soon

• Theorists & model builder 
encouraged to also use 
electron data!

• www.e4nu.com

http://www.e4nu.com/
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Backup Slides



Cross-Section Extraction

• Subtract backgrounds

• Scale counts by luminosity

• Correct for detector acceptance & radiation

Systematic uncertainties on each correction 
plus variation among detector sectors
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Hall A@ JLab

H(e,e’p) @ 4.32 GeV

A.Papadopoulou, et al, Phys. Rev. D 103, 113003 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


Well defined signal definition: Min θe Cut
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@ 1.1 GeV:  θ = 17 + 7 / P

@ 2.2 GeV: θ = 16 + 10.5 / P

@ 4.4 GeV: θ = 13.5 + 15 / P
See backup for p / π+/-
definitions

• We do not acceptance correct below min θ



Well defined signal definition: Min θe Cut
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@ 1.1 GeV:  θ = 17 + 7 / P

@ 2.2 GeV: θ = 16 + 10.5 / P

@ 4.4 GeV: θ = 13.5 + 15 / P
See backup for p / π+/-
definitions

• We do not acceptance correct below min θ



Background Subtraction

Non-(e,e’p) interactions lead to multi-hadron final states
Gaps can make them look like (e,e’p) events

x
x
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Data Driven Correction

Non-(e,e’p) interactions lead to multi-hadron final states
Gaps make them look like (e,e’p) events

• Use measured (e,e’pπ) events
• Rotate p, π around q to

determine π detection efficiency

• Subtract undetected (e,e’pπ)

• Repeat for higher hadron multiplicities
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Data Driven Correction

Non-(e,e’p) interactions lead to multi-hadron final states
Gaps can make them look like (e,e’p) events

• Use measured (e,e’pπ) events
• Rotate p, π around q to

determine π detection efficiency

• Subtract for undetected (e,e’pπ)

• Repeat for higher hadron multiplicities

(2p, 3p, 2p+1π, ...)
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Subtraction Effect



Systematics: Sector Dependence
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Systematics: Sector Dependence
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Systematics: Sector Dependence
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Quantifying uncertainty by using
unweighted variance & by subtracting variance from statistical uncertainty

12C @ 1.1 GeV • Playing this game across 
all nuclei & energies

• Division by √Nsectors

• Flat uncertainty of 6%
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Closure Test

• Use GENIE files
• Filter specific topologies (e.g. 1p0πp + 1p1π)
• Subtracted & True 1p0π are 

in good agreement Unsubtracted 1p0π

Subtracted 1p0π
True 1p0π
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1st e4ν Submission

Calorimetric energy reconstruction using the 1p0π channel

• Area normalized results
• No information with respect 

to absolute scale
• G2018 offset potentially 

due to binding energy issue 
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Step #2: Normalized Yield

Data 
• Divide # events by integrated charge & target thickness to get xsec in μb
• Divide by bin width to get μb/GeV

Simulation 
• Get GENIE total cross section for Ee / target A & Q2  > Q2min

• xsec = (Selected detected events / all generated events) * total xsec / bin width

No corrections for CLAS acceptance or for bremsstrahlung radiation
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Step #2: Normalized Yield

• Absolute scale comparison
• Small effect @ 1GeV



• Start from reco / true ratio w/o radiation to obtain acceptance correction

• Average on a bin-by-bin basis x = |SuSav2 + G2018| / 2

• Due to offset, G2018 Ecal predictions have been shifted by

10/25/36 MeV for 4He/12C/56Fe respectively

Step #3a: Acceptance Correction
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Step #3a:  Example 12C @ 1.1 GeV

Use reco / true ratio to obtain acceptance correction

SuSav2 G2018
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Step #3b: Radiation Correction

Use ratio of red / blue
to correct for radiation



On a bin-by-bin basis

x = |SuSav2 - G2018| / Sqrt(12)

Bin Entry = x / Average * 100 %

Same recipe as for acceptance correction but,
to avoid infinities, will use average (1 bin) around the peak and 

average(reco) / average(true) for correction factor

Averaged Acceptance Correction Uncertainty
Over True Beam Energy
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Excluding Radiation

Radiation

γ from π0 γ from π0
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Correction Factors
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Step #4: Absolute Cross Sections

After both acceptance & radiation corrections, without systematics yet



70

Sanity Check: (e,e’) cross-sections

Khachatryan, Papadopoulou, and Ashkenazi et al. 
(CLAS & e4ν collaborations), Nature 599, 565 (2021).

eGENIE



71

Systematics

Source Uncertainty (%)

Detector acceptance
Identification cuts

φqπ cross section dependence
Number of rotations

2,2.1,4.7 
(@ 1.1,2.2,4.4 GeV) 

Sector dependence 6

Acceptance correction 2-15

Overall normalization 3

Electron inefficiency 2
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Energy Reconstruction Accuracy
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EQE Nucleus & Energy Dependence

A.Papadopoulou, et al, 
In preparation
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PT Nucleus & Energy Dependence

M.Khachatryan, A.Papadopoulou, et al.
Nature 599, 565–570 (2021)
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δαT Nucleus & Energy Dependence

M.Khachatryan, A.Papadopoulou, et al.
Nature 599, 565–570 (2021)
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δφT Nucleus & Energy Dependence

M.Khachatryan, A.Papadopoulou, et al.
Nature 599, 565–570 (2021)



Into The 3D e4ν Multiverse!
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A.Papadopoulou, et al, 
In preparation
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Nuclear Sensitivity Variables

A.Papadopoulou, et al, In preparation

Sensitivity to Fermi motion

Sensitivity to final state interactions

Preliminary

Preliminary
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Missing Momentum Approximation

Under QE assumption

Phys. Rev. Lett. 121, 022504 (2018)

Preliminary
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A.Papadopoulou, et al, In preparation

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.022504
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Fails To Reproduce True Missing Momentum

Under QE assumption

Phys. Rev. Lett. 121, 022504 (2018)

True missing momentum

p = proton 3-vector
q = momentum transfer

| |

A.Papadopoulou, et al, In preparation

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.022504
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Issues Identified & Fixed In G2018

Phys. Rev. D 103, 113003 (2021)

(e,e’) 12C with G2018

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


SuSav2 Offers More Accurate Prediction

82

Phys. Rev. D 103, 113003 (2021)

QE MEC RES DIS

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


Probing The Neutrino Phase-Space With Electrons 

83
Electron results scaled by Q4

QE Events

A.Papadopoulou, et al, Phys. Rev. D 103, 113003 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


Consistent Treatment Of MEC Events With SuSav2
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Phys. Rev. D 103, 113003 (2021)

Unique chance to constraint one of least understood interaction channels

Electron results scaled by Q4

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


Inclusive C cross sections

85

Phys. Rev. D 103, 113003 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


Inclusive C/Fe cross sections
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Phys. Rev. D 103, 113003 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


Inclusive H cross sections
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Phys. Rev. D 103, 113003 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


Q4 Scaling Effect
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Available Nuclear Models

89

Phys. Rev. D 103, 113003 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003
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SuSav2 Configuration / GEM21_11b_00_000

Electrons Neutrinos

QE SuSav2 SuSav2

MEC SuSav2 SuSav2

RES Berger-Sehgal Berger-Sehgal

DIS AGKY AGKY

FSI hN2018 hN2018

Nuclear Model Relativistic Mean Field Relativistic Mean Field
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G2018 Model Configuration

Electrons Neutrinos

QE Rosenbluth Nieves

MEC Empirical Nieves

RES Berger-Sehgal Berger-Sehgal

DIS AGKY AGKY

FSI hA2018 hA2018

Nuclear Model Local Fermi Gas Local Fermi Gas


