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Thank you for a lovely workshop! and for support to attend

Pandemic challenge: difficulty seeing the landscape for
what it is.

It has been great to be here with people

What follows is my view + informal polling of workshop
participants. Themes:

1. Neutrino-nucleus cross sections needs are
complex and varied

2. Solutions require sustained support of, and
communication, collaboration between,
experimenters and theorists

Credit: Valerie Higgins, Twitter -

https://twitter.com/ValerieH137/status/1453408717 156884486
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The scale of neutrino interactions
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https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1307
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.84.1307

The scale of neutrino interactions: intermediate, ~0.1-20 GeV

Accelerator programs:
- Neutrino oscillation (electron appearance) " 4

- Neutrino-nucleus cross section
measurements
- Searches for exotic physics

Atmospheric programs:
- Same, but given higher energy tail

(tau appearance)
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Why do interactions matter to experiments?

o(E,)/E, (10°®cm?nucleon 'GeV ™)
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Example: Tokai-to-Kamioka (T2K) experiment

Basic challenges:
- Need prediction across energy
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Why do interactions matter to experiments?
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Example: Tokai-to-Kamioka (T2K) experiment
Basic challenges:

Need prediction across energy
Need all flavors (neutrino, antineutrino,
electron, muon, tau)
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Example: Tokai-to-Kamioka (T2K) experiment
Basic challenges:

Need prediction across energy
Need all flavors (neutrino, antineutrino,
electron, muon, tau)
Event rates are a mix of processes
- Need CC/NC
Need exclusive measurements



Why exclusive?

7 7 Example of a multiparticle shower,
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Example of a multiparticle shower,

Why exclusive?
— , T2K ND280 detector
\

N Models predict final state particles, and
_P_LL_l—_ TH E- Credit: Hyperbole and a haf associate those to the correct final state

TH I N (J\S, ” The cross section model is important for

and for the true-reco relationship
(R) and energy estimators

... oh and | also want multiple
target materials (H, C, O, Ar...)




N;BB(Ereco) — Z:¢a (Et'rue) X U%(Etrue) X Paﬁ(Etrue) X 6B(Et'rue) X Ri(Etrue; E’r‘eco)

N]%/'DEreco) — Z: ¢a (Etrue) X o'fx (Etrue) X €q (Etrue) X Rz (Etrue; Ereco)

- Near detector information provide stability monitoring, improved event
rate prediction and reduces shared systematic uncertainty from flux,

interaction model GENIE 2.12.10, DUNE FD TDR CV Tune
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| Exemaloporimens +theary
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“Inputs” are important - they determine parameterization, uncertainties

External experiments: electron scattering, pion scattering, neutrino H/D, nucleus scattering
Theory
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“Inputs” are important - they determine parameterization, uncertainties

The process is iterative and takes time
- Did this work? Let’s try it in an ND fit (1x / year)
- The needs of the experiment evolve with time

Iterative process

Model testing/robustness

14



Broadly speaking, what do experiments need?
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Specifically speaking, what does T2K need?
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Soecifieat king—whatd ToK P

... how do | know what matters?

First attempt: Look at event rates

Discrepancies with prediction

(e.g. CC1x+ with low momentum pion
sample has a excess)

Personal fears: NC1y and NC1x+ difficult
to validate experimentally theoretical
checks welcome

Number of events/250 MeV
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What matters: event rates

2020 era T2K

IR p IRe
Error source (units: %) FHC RHC || FHC RHC FHC CClx* | FHC/RHC
Flux 2.9 2.8 2.8 2.9 2.8 1.4
Xsec (ND constr) 3.1 3.0 3.2 3.1 4.2 1.5
Flux+Xsec (ND constr) 2.1 2.3 2.0 2.3 4.1 1.7
Xsec (ND unconstrained) 0.6 2.5 3.0 3.6 2.8 3.8
SK+SI+PN 2.1 1.9 3.1 3.9 13.4 1.2
Total 3.0 4.0 4.7 5.9 14.3 4.3

Differences in the nue/numu cross section are 2-3%

- Difficult to constrain at ND
- validation with future ICARUS x NuMI and DUNE ND data

- Needs theory

18



What matters: event rates
2020 era T2K

IR p 1Re
Error source (units: %) FHC RHC || FHC RHC FHC CClzx* | FHC/RHC
Flux 2.9 2.8 2.8 2.9 2.8 1.4
Xsec (ND constr) 3.1 3.0 3.2 3.1 4.2 1.5
Flux+Xsec (ND constr) 2.1 2.3 2.0 2.3 4.1 1.7
Xsec (ND unconstrained) || 0.6 2.5 3.0 3.6 2.8 3.8
SK+SI+PN 2.1 1.9 3.1 T

@ Model testing/robustness

N D COﬂStralned UnCeI'talntleS Far detector / oscillation rates

- Processes not in isolation, convolved with ND flux - come back to this
We can tune it, but we are uneasy - keep iterating 19



What matters: robustness tests

* Create a “data” set corresponding to
an alternate QE model

* Run entire T2K oscillation analysis
chain (fit near detector with nominal
cross section uncertainties and
propagate) to evaluate effect on
oscillation parameters
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the latest T2K
analysis!
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What matters: robustness tests

s By ——— ——" 2019 era
* Alternate models may T g , | et analysis as an
create biases for current 2
analysis; T2K adds § 26 example, not
additional uncertainty E s the latest T2K
& gl b Nl analysis!
 We mustn’t run away! i
N(jm T TeK Dfelimiﬂaﬁy . Complexities:
. - Event rates don’t always
quS‘mOV [~ _—_: indicate if we will see
j | )/ — bias.
2 - Depends on statistical
5 exposure for when
‘3‘ effects matter
2
1
6.
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What matters: robustness tests
T2K 2020 analysis vintage
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Successful ingredients for theory-experimental collaboration

Accessible, general tests with event rates/cross section
- Experiment provides flux, data release
- Comparison of new model to our notional model
- Benchmarking against ND data and/or tune
- Used to inform uncertainties, develop new models to experiment

Robustness tests
- Needs experimental chain (ND fit)
- Need suitable interface to experiment - not always through generator, but it sure
helps

lterative
- Direct, extended communication is what has worked - theorists within T2K attend
meetings, guest speakers.

23



What does T2K need?

State of experiment

New ND (upgrade) coming online - increased acceptance
Outstanding puzzles in data

- Difficulty to reconcile low and high pion momenta samples

- High angle differences in oxygen enhanced sample vs. carbon
New FD has new neutron tagging capabilities (SK-Gd)
Still. Stats. Limited.

Please, help us!

Exclusive predictions provided in a generator-implementable way (QE, RES, 2p2h)
Further assessment of how cascade/generator FSI compares to microscopic distorted
wave function FSI - a good start: https.//arxiv.org/abs/2202.01689
Assessment of the impact of nuclear effects in RES interactions, detailed input on
nucleon-level effects that can impact hadron kinematics
More guidance on how we can safely extrapolate constraints on carbon to oxygen

- Related: T2K/DUNE; ANNIE/SBN comparisons of O/Ar
Low energy neutron multiplicity predictions (for SK-Gd)

24
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What does T2K need?

State of experiment
- New ND (upgrade) coming online - increased acceptance
- Qutstanding puzzles in data
- Difficulty to reconcile low and high pion momenta samples
- High angle differences in oxygen enhanced sample vs. carbon
- New FD has new neutron tagging capabilities (SK-Gd)
- Still. Stats. Limited.
Please, help us!
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- Further as Very exciting work at this meeting torted
wave func Radiative corrections (nue/numu) - R. Hill, R. Plestid talks

- Assessme ACHILLES! - J. Issacson talk DN

nucleon-ld  Consideration of how to communicate via tuning meaningfully - S. Li talk

: Benchmarking and uncertainty quantification! - A. Lovato talk
- More guid en
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- Low energy neutron multiplicity predictions (for SK-Gd) 25
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Reach of ND upgrade - example comparators?

Let’s work together to define
useful model effort and
comparisons

Phys.Rev.D 105 (2022) 3, 032010

|s parameterization
sufficient?

Can be connected to osc
OR comparable sensitivity
of ND

TABLE II. A list of fit parameters, their prior constraints and
notes regarding their application. While not a fit parameter, the
bin-to-bin uncorrelated uncertainty is also listed.

Parameter Prior Constraint Notes
p-shell 30%
normalization
s-shell 30%
normalization
SRC strength 30%
total QE 10%
normalization
Removal energy Unconstrained
shift
2p2h, low Unconstrained < 600 MeV
2p2h, high Unconstrained > 600 MeV
Undetected pions  Unconstrained
Pion FSI Unconstrained
contribution
Nucleon FSI 30%
strength
Flux (binned E;;) T2K covariance
Hydrogen 5% U only
normalization
Uncorrelated 11.6% (at No parameter fit, POT
Uncertainty 6 x 10?! POT) dependence

parametrized as a function of the fit variables and imple-
mented as nuisances with priors included mostly as
Gaussian penalty terms in the likelihood. The prior uncer-
tainties and fit variables are those discussed in Sec. II B 2.
One exception to the treatment of the prior uncertainties is
an ad-hoc bin-to-bin uncorrelated uncertainty (as also
detailed in Sec. IIB2) which is added directly to the
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] Pion FSl E
0 E 5 Undetected Pion =
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FIG. 7. The 1o sensitivity to systematic parameters as function
of POT in neutrino case (top) and antineutrino case (bottom)
when fitting the reconstructed CCOz data binned in §py and E ..
The values in the plot are the ratio of the parameter uncertainty to
the parameter nominal value expressed as a percentage.



What does DUNE need?

State of experiment
- Still learning about ultimate reach of experiment
- New capabilities outside current program (e.g. PRISM, ND-Gar, nu-e scattering)
will be crucial, but are being assessed
- First pass of uncertainties in TDR (next page)

Start with? infrastructure building and lines of communication
- Expect that many of the previous problems will be faced by DUNE in some capacity,
especially resonance production

27



What we learn at the ND:

parameter constraints
From: DUNE Physics TDR, Fig 5.34

https://arxiv.orq/pdf/2002.03005.pdf

Gives sense of what the ND is not able to reduce
But, does not quantify:

- What input is needed from theory, and at what level
- for external measurements (electron scattering)
- How the model development needs go with time
(iterative process takes time, this is at the end)

= Prior = FD-only = ND+FD

nuenumu xsec ratio -
nuenuebar xsec ratio
C12ToAr40 2p2hScaling nubar -
C12ToAr40 2p2hScaling nu
BeRPA D -

BeRPA B 4

BeRPA A -

NR nubar p NC 3Pi 4
NR nubar p NC 2Pi A
NR nubar p NC 1Pi
NR nubar n NC 3Pi
NR nubar n NC 2Pi A
NR nubar n NC 1Pi A
NR nubar p CC 3Pi
NR nubar p CC 2Pi
NR nubar p CC 1Pi
NR nubar n CC 3Pi
NR nubar n CC 2Pi
NR nubar n CC 1Pi -
NR nu p NC 3Pi 4

NR nu p NC 2Pi -

NR nu p NC 1Pi

NR nu n NC 3Pi 4

nN
nN

NR nu np CC 1Pi A
p CC 3Pi
pC

NR nu n CC 3Pi |
NR nu n CC 2Pi |
E2p2h B nubar
E2p2h A nubar 4
E2p2h B nu
E2p2h A nu -
CCQEPauliSupViaKF A
FrPiProd N -
FrAbs N -

Frinel N -

FrElas N

FrCEx N 4
FrPiProd pi
FrAbs pi

Frinel pi A

FrElas pi

FrCEx pi
CV2uBY 4
CV1uBY A

BhtBY 4

AhtBY A

Theta DeltaZNé)i 1
MvNCRES -
MaNCRES 4
MvCCRES 4
MaCCRES -
VecFFCCQEshape A

|
-
o
-
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What do we need as a community to move forward?

Establish lines of communication, scope of roles. What is needed from each group with their unique
expertise?

- What material can only experimentalists provide and is more needed? (event rates, tunes) - let’s

request
- For sustained collaboration, funding support may be needed for theorists - /ots of really good

work here!
Strengthen ability to pass work across; lower barriers to entry

- Generator interface improvements; standard outputs
- Theory driven generator efforts
- Work together on infrastructure (e.g. interface, speed of calculations)

Benchmarking is key, use above tools with initial set of problems

- What do we all agree on (parameterization choice, open problems)
- Comparisons to ND data. What are the current disagreements and possible origins?
- (same as above-- does this process happen together?)

Then, we iterate
29



What do we need as a community
to move forward?

Benchmarking is key.

- Compare model + uncertainties
- both theory and experiment
- Example: MINERVA
https://arxiv.org/pdf/2203.08022.pdf
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https://arxiv.org/pdf/2203.08022.pdf

Summary

A robust understanding of neutrino interactions is important to answer many of the
open questions we face today:

Near detectors are important to provide data on neutrino-nucleus interactions, but
recall... they are also where we search for BSM signal

We need theory!
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Summary

Including theory and developing a robust model takes time and sustained contact
- In my view, the pandemic has really impeded progress
There are important efforts in theory which are beneficial to future experiments

- We may not yet have clear “I need X to Y precision” targets, but we do have good

general sense of what is needed + specific actions underway

- Lower barriers to entry, new generator/interface efforts
- Confirm where we are: benchmarking, what can we agree on?

- Will be an iterative process - worth considering how we want to iterate for
maximal benefit
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backup
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What we mean when we say “visible energy”

Courtesy: Kevin McFarland, Phil Rodrigues

TALK ABOUT=
Calorimetry
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E avail = (Proton and r* KE) +(Total E of other particles except neutrons)
April 2016 K. McFarland, Identifying Nuclear Effects @ MINERVA

Calorimetric detectors energy estimation depends on

particle type -> exclusive
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Why neutrino interactions matter - DUNE example
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https://arxiv.org/pdf/2002.03005.pdf

New approach: PRISM
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https://arxiv.org/pdf/2103.13910.pdf

New approach: PRISM
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Combine spectra for an
oscillation-matched flux



PRISM provides robustness against mismodelling
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Allows for novel nuclear physics studies

Other DUNE detectors (ND-GAr, SAND) also have unigue measurement opportunities


https://arxiv.org/abs/2203.06281

Another view of the necessity of precision modelling

From: DUNE ND CDR;:
https://arxiv.orq/pdf/2103.13910.pd{
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https://arxiv.org/pdf/2103.13910.pdf

What is the amount of tolerable uncertainty on dCP? Hot take

1300 km
Event rates tell you about dCP. Normal MH
- Current experiments and future may be dominated 0.16 -a e
by FD or ND detector response °
0.14 =0
However, we need a robust model = — -
- Note the interesting behavior of how dCP changes 5 0-12 e

the location of 2nd osc max * 010 — U nOSolar Ay
- Dm2 also modifies this feature g
- Dm2 can be sensitive to the incorrect model 0.
- It’s important to measure all parameters!

Correctly
We need to assess role of residual

systematics AND robustness

- What physics is not currently captured sufficiently 00
well? 0 1 10

- Don’t forget atm nu or NC measurements for Neutrino Energy (GeV)
completeness of 3 flavor model DUNE Physics TDR 40




