
Stephen White
May 2022

Hardware DB Conceptual Overview

• About 2015 it started being adopted by other experiments including:
– Mu2e, Icarus, SBND, Proto Dune, Ash River (currently under development)

• Known Issues with HWDB
– Supporting a new experiment means creating a new schema from scratch.
– Adding a new type of part/test requires developing and adding a new, distinct table or columns to the

schema.
– Good at tracking current state but little to no historical data was kept.
– Very limited API allowing uploading data only.
– Utilizes original, very early, web technology which will not last for the life of DUNE.

Hardware DB, A Bit of History

• HWDB was originally developed and created
for NOvA about 2008-ish.00

– By Dennis Box, Margherita Vittone and
me. With guidance from Jon Paley.

• It was created to track a specific set of parts
for NOvA and some tests done on them.

• Ability to see what an item is connected to or what is plugged into it.
– Both current and past history of all connections.

• Support for storage of associated documentation and or photographs.
• Create a unique physical identifier (PID) for every item as well as provide for the generation of their

labels. i.e. bar codes.
• For a complete list of requirements: https://docs.dunescience.org/cgi-bin/sso/ShowDocument?docid=23333

DUNE requires a very large set of discrete types of items to be tracked making creating individual tables for
each item extremely difficult. Well, impossible.

Dune Expands the Requirements
• The full current state as well as past history must be

available for each item.
• Requires the complete test history for every item, not

just the last one done on item or a history on a few
items.

• Robust html access for queries, inserts and updates.

https://docs.dunescience.org/cgi-bin/sso/ShowDocument?docid=23333

Hardware Database supports the complete life cycle of each
item in the DB for the experiment as a whole.

• Manufacturing / Procurement
– Manufacturer created a

component
– Where it was created

• You describe what items is to be stored
in the DB, the data to be stored for it.
As well as what items are allowed to
be attached to it.

– No longer need a developer to
add a table for each new type of
item.

– You create a definition of what
that item is, a pattern if you will.

– Item data is entered according to
the pattern.

Hardware Database for DUNE

Actual readable schema:
https://cdcvs.fnal.gov/redmine/projects/components-db/wiki

Simplified view of Schema. (Sorry for the fuzziness.)

https://cdcvs.fnal.gov/redmine/projects/components-db/wiki

• Versioning is fully supported with a history of all
changes.

– Displays the item according to the version in
effect at the item’s creation or last update.

– The entire history of “patterns” and each item
is available.

• Testing and Quality Control
– Create any number of tests for each type of

item
– Run any test and store its data multiple times.

There is no limit.
– View the entire test history.

• Support for Documentation, Photographs, URLS.
– Can be tied to the Patterns, Items and

Tests.
• A complete, secure, REST API is available for

most of what the forms do.

Hardware Database for DUNE
Security Tables

• The page the production link is on: https://dbweb0.fnal.gov/.
– You can also access the development system

• All DUNE analysis experimenters have read only access.
– Requires a FNAL services account
– If you do not do analysis, you may need to be manually

added.

• Login using your Fermilab Services account/password.
– We support the lab’s Single Sign On (SSO).
– Non-FNAL accounts are not allowed.

• Security is provided by
– Creating a role for one or more component types
– Adding users to roles.

• Data can be entered through web forms or a REST API.
– The API requires a CILogin certificate for security.

Accessing the System

https://dbweb0.fnal.gov/

This system is built around the concept of

• Component Types

• Items

• PartIDs.

• This is integral to all web forms, APIs and database tables.

The Big Three

• Component Type is simply a
PATTERN, where you define
what DATA will be collected
for a type of item.
– This is a virtual construct.
– It is used to display a

web form for specific to
that type of item. It is
also used by the APIs.

Component Type

• An item is simply a
physical piece of real
world equipment.

• Every Item must be
barcoded with a PartID.

• A PartID is a unique
identifier defined
according to DUNE
specifications.

– https://edms.cern.ch/document/2505353/3

Items and PartIDs

● Every item must have a PartID
attached via a barcoded label.

https://edms.cern.ch/document/2505353/3

Jim Stewart will be giving an introductions to the Parts Identifier.

Hajime Muramatsu will provide training on setting up Component
Type definitions.

Experience has shown that the success of the Hardware Database always
depends on the willingness of the physicists to enter the data. Once a
physicist leaves the experiment all unentered historical data is lost forever.

Moving Forward…

