Solid Absorbers in MICE Step IV

Pavel Snopok IIT/Fermilab

MAP Friday phone meeting, Fermilab

Old MICE Schedule

- The original MICE schedule included Steps I through VI.
- Would allow running with one spectrometer solenoid (SS) in Step II, then two, with no absorber focusing coil (AFC) in between in Step III.
- For various reasons now both SS and AFC arrive around the same time.
- Go directly to Step IV.

MICE Schedule

- Step IV measurements will take 4 to 5 ISIS run periods (Feb–Dec 2013).
- First demonstration of muon ionization cooling.
- Whichever goes first: liquid Hydrogen (LH2) absorber or solid absorbers is still not decided ("stay flexible" mode).

Various absorbers

(a) liquid hydrogen; (b) solid flat (LiH, AI, PE); (c) solid wedge (LiH, PE)

Flat absorber and support

Flat LiH absorber

- LiH absorber is at Fermilab now.
- Engineering drawings have been finalized, approved, sent to Fermilab.
- Absorber support will be fabricated at Fermilab, details are being worked out.

LiH for Thermal Tests

- Smaller diameter disk, coated.
- Hole in the middle for the heater.
- Smaller holes for thermal probes.
- Will be tested at Fermilab shortly.

Flat LiH absorber support

Solid Absorbers in MICE Step IV

Flat absorber support, other materials

Other materials allow to look at different equilibrium emittances.

9

Pavel Snopok, IIT/Fermilab

Solid Absorbers in MICE Step IV

Flat LiH absorber mounting

A-A (1:20)

- The weight of the rack with the absorber is around 16-18 kg (depending on the material).
- Absorber support outer radius is 465.2 mm, AFC bore inner radius is 470.0 mm, clearance is limited.
- Handles are helping, but we will need some overhead support to move the absorber in and out.
- Other materials will be used for thorough equilibrium emittance formula testing, hence the spacers for AI, PE, etc.
- Handles are removable to avoid interference between the SS and AFC modules.

Wedge absorber support

90 Degree Wedge Absorber Support

Solid Absorbers in MICE Step IV

45 Degree Wedge Absorber Support

Comments on the drawings

- Same basic design as for the flat absorber, more rods and extra ring to enforce the construction (due to non-symmetry).
- The primary orientation of the wedge will be "on its side" (so that the figure above is a side view).
- In the 45-degree half-wedge arrangement there is a thin spacer holding the wedge in place (blue piece in the figure above).

Step IV run plan

Aims of Step IV

$$\frac{d\varepsilon_n}{dz} = \frac{-\varepsilon_n}{\beta^2 E} \left\langle \frac{dE}{dX} \right\rangle + \frac{\beta_t \left(0.014 \text{ GeV} \right)^2}{2\beta^3 E m_\mu X_0}$$

- Demonstrate ionization cooling with materials typical of the cooling channels under consideration (liquid Hydrogen, LiH).
- Wedge absorbers: demonstrate longitudinal emittance reduction.
- Verify the cooling formula for various materials, beam parameters, optics settings.
- Develop and thoroughly test simulation and analysis tools.

- No material in the cooling channel (one dedicated ISIS run, presumably Feb 2013).
- Check/understand magnet performance: ramp coils individually, compare data with simulation.
- Check/understand the lattice: set the cooling channel parameters to the baseline $\varepsilon = 6\pi$ mm·rad, p = 200 MeV/c, run large emittance beam, scan beam momentum from 170 to 230 MeV/c.
- Repeat test with a different β function setting (time-permitting).
- Look at different reference momenta settings (240, 200, 140 MeV/c), emittance settings (10, 6, 3 π mm·rad), β function settings (42, 25, 15, 7 cm) magnetic configuration (flip, non-flip).

Step IV configurations

A (rather long) table of various configurations we may want to consider:

Parameters				Step IV Configurations						
Field	Beta	Momentum	Emittance	Empty	Liquid	LiH	Al	PE	LiH 90⁰	LiH 45⁰
flip	[cm]	[MeV/c]	[mm rad]	channel	Hydrogen	disk	disk	disk	wedge	wedge
Yes	42	240	10		+	+	+		+	+
Yes	42	240	6	+	+	+	+	+	+	+
Yes	42	240	3		+	+		+	+	+
Yes	42	200	10	+	+	+	+		+	+
Yes	42	200	6	+	+	+	+	+	+	+
Yes	42	200	3	+	+	+		+	+	+
No	7	240	10		+	+				
No	7	240	6	+	+	+				
No	7	240	3		+	+				
No	7	200	10		+	+				
No	7	200	6	+	+	+				
No	7	200	3		+	+				
				14	36	36	9	9	24	24
									Total:	152

Change flip/non-flip magnet configuration	
(run down magnets, swap cables, check, run up)	\sim 1 day
Change momentum and β of the cooling channel	
(retune focusing coils, matching coils, possibly SS)	${\sim}0.5$ day
Change beam momentum and emittance	
(magnet retuning, change diffuser setting)	\sim 1 hr
Collect 100k of useful muons	\sim 2 hrs
Replace one absorber with another	${\sim}$ 8 days
All empty channel configurations (14)	\sim 11 days
All LH2 (or flat LiH) absorber configurations (36)	\sim 18 days
Additional flat absorbers (AI, PE) (9+9+absorber change)	\sim 16 days
All 90° (or 45°) wedge absorber configurations (24)	\sim 12 days

Table: Basic operation time estimate

- 152 configurations/settings, further refinement is required.
- One way to reduce the number of configurations is to use a global online reconstruction tool (under development now) that allows to do some preliminary analysis in real-time and reject some configurations based on that analysis.
- Hardware configurations vs ISIS runs (dates are preliminary):
 - Empty channel (Feb 2013);
 - Liquid Hydrogen absorber (May 2013);
 - Flat solid absorbers, LiH and other materials (July 2013);
 - Wedge absorbers, 90° and 45° LiH (October 2013);
 - One more ISIS run may be available in Step IV configuration (November 2013).

- LiH flat absorber is complete, LiH wedge is underway.
- Final versions of the engineering drawings for flat absorbers were approved, sent to Fermilab, now at the machine shop for a quote.
- Final versions of the drawings for the wedge absorber have not been approved yet, we will have a meeting on that next week.
- Procedures to send the absorbers to RAL are under discussion.
- Detailed Step IV run plan is being discussed and updated (next iteration = upcoming MICE collaboration meeting in Glasgow).
- Step IV measurements will take 4 to 5 ISIS run periods (2013).