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Abstract

Abstract.

1 Introduction and executive summary

This topical group focuses on Dark Matter and Dark Sector searches at high energy col-
liders. We will also address the complementarity between the collider searches and other
probes of dark matter.

2 How can we best test the WIMP paradigm?

2.1 Testing the simplest/minimal WIMP models (EW multiplets) and
their extensions

Simplest/minimal WIMP models. This is the case in which dark matter is part of a elec-
troweak multiplet. Extension of the minimal scenario can include nearby states and more
coannihilation channels. It is very predictive, and the thermal relic abundance typically
requires the dark matter particle to be up to the TeV range. The LHC will explore the
hundreds of GeV range. To fully explore this scenario, a 100 TeV proton proton collider or
a high energy lepton collider would be necessary. This is a clear physics argument for the
parameters of the future colliders.

The main results to be summarized in this section.

1. Minimal DM and thermal targets [a table].

2. With doublet (Higgsino) and triplet (wino) as examples, summary plot including the
following reaches

(a) Reach at HL-LHC, CLIC, ILC, FCC-hh/SppC. This is basically taken from the
briefing book [1] [need more references].

(b) Reaches at muon collider, including results from new studies [2–7]
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2.2 Testing the Higgs portal

Higgs portal. This scenario take advantage of the unique property of the Higgs boson to
form the most relevant portal operator between the SM and the dark sector. It also offers a
connection between dark matter and the weak scale. At the same time, the models in this
scenario are not limited to WIMPs. There are many connections surrounding this scenario
with EF02 and EF09. Precision measurement such as Higgs coupling and Higgs decay both
at the LHC and future colliders can offers interesting probes in this scenario.

The results summarized here

1. Higgs invisible decay and DM reach. [8]

2. Singlet extension with flavorful coupling. [9–12]. [perhaps check with Homiller
again for contribution]

2.3 Testing simple mediator models (s-channels/t-channels)

Content of section and whitepapers included (as references):
Most of the text will be summarized/come from this whitepaper in preparation, main

reference for this section: https://www.overleaf.com/read/zjjwrpqxncnw

• Motivations for simplified models at the LHC

• Brief description of models with simple mediators (includes s−and t−channel mod-
els, introduce t−channel for connection to dark showers). Also mention similar sub-
mitted models from [13, 14].

• Status at the time of the European Strategy (models with fixed couplings)

• Updates from the European Strategy: varying model couplings analytically [15]

• Collider complementarity between DM (MET) search and mediator searches [16–
18]. Connect to results in terms of resonances from EF09. Summary plots similar to
those in Figs. 1.

• Complementarity with other experiments: Cosmic and Rare and Precision Frontiers

– Vector and scalar mediator with ID/DD (Figs. 5, 4, 3)

– Mention invisible decays of dark photon (goes in the non-WIMP section)

– Connection to Gravitational Waves [13]

Main messages for this section:

• A future hadron collider has the best reach for simple mediator models with quark
couplings

• The sensitivity of colliders depends on simplified model couplings and masses; after
having tested a number of scenarios it appears that collider bounds are strongest in
cases of TeV-scale mediator masses (no matter what the other parameters are)
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• Electron collider results strongest for models with lepton couplings and with mixing
to Z/Higgs/photon (CD: we don’t have much of a statement for muon colliders, maybe
work with EF09 to include a statement from resonant searches)

• We need cosmological confirmation that what we discover (resonance/invisible par-
ticle) is dark matter, so complementary experiments are essential

• Strenghts of colliders: probing DM mass scales between DD and ID (depends on the
model but part of the overall strategy), probing the dark interaction even when one
cannot produce the DM particle

Summary plots to be included in this section:
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Figure 1: HL-LHC and FCC-hh projected limits for individual analyses in the vector model
and with a range of couplings.
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Figure 2: Projected exclusion limits on the couplings gq (a), gχ (b), and gl (c) for a vector
mediator at the HL-LHC. The result is shown as a function of the mediator mass mmed; the
mass of the DM candidate is fixed to 1 GeV in all cases. The coupling on the y axis is varied
while the other two couplings are fixed: in (a), gχ=1.0 and gl=0.0; in (b), gq=0.1 and
gl=0.0; and in c, gq=0.25 and gχ=1.0. This will also contain FCC-hh limits on couplings,
overlaid.
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Figure 3: Comparison of projected limits from FCC-hh with constraints from current DD
experiments on the spin-independent DM–nucleon scattering cross section in the context
of the vector simplified model. This figure will also contain HL-LHC bounds, and there will
be another one for scalar models.
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(a) Monojet analysis
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Figure 4: Effects on the HL-LHC exclusion limits in σSI for the monojet (a) and dijet
(b) signatures when varying the gq coupling. The dark matter coupling is held fixed to
gDM = 1; there is no coupling to leptons. Limits from existing direct detection experiments
are shown for context.
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Figure 5: Effects on the HL-LHC exclusion limits in σSI for the monojet (a) and dijet (b)
signatures when varying the gχ coupling. The mass of the mediator is fixed to mmed = 3mχ;
there is no coupling to leptons. Limits from existing direct detection experiments are
shown for context. These curves will be merged into the previous figure.
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3 Beyond WIMP

CD: Since this will be part of the overall BSM report, we need to think about how to integrate
the topics below in what EF09 has written. I am happy if the big questions go at the start of
the overall merged whitepaper and the DM considerations follow each of the model description
and results.

Content of section and whitepapers included (as references):

1. Recasting simplified models results in terms of dark photon and PBC benchmarks
(HL-LHC), see Figs.6, 7, 8. https://www.overleaf.com/read/zjjwrpqxncnw. Also
lepton collider results [19]

2. High mass particles as completion of dark sector models [20]

3. Models of dark showers, perspectives on dark matter [21, 22]

4. Potential of the Forward Physics Facility for beyond-WIMP DM scenarios [23]

5. Discussion of non-minimal dark sectors [24].

Main messages for this section:

1. Even though DM at colliders mainly focused on WIMP so far, there are non-WIMP
DM models and rich dark sectors accessible to colliders. Examples of vector (dark
photon), scalar and axion portal. It is possible to determine what coupling is needed
to make up the entirety of the relic using these models, but there are caveats to doing
so (e.g. other processes that modify early universe abundances), so we shouldn’t
restrict/stop our searches even when the model is overproducing DM.

2. Models and results from ”generic WIMP” searches often apply to non-WIMP with
some reinterpretation (important to make material available for doing so)

3. Many models can have DM interpretation (Pedro Schwaller’s ”dark showers story”:
Analogy with QCD, you have a dark interaction, this basically gives you candidates
because things (like the proton) don’t decay. This is a strong story that can be told. Also
you don’t need the mass from the Higgs, you have a theory that makes massive, stable,
neutral states. . . this can be emphasized. DM doesn’t necessarily mean we have MET,
maybe there’s a dark baryon that isn’t in the shower. Once you find it, you scrutinize
what kind of DM we get..

4. Colliders can share infrastructure for beyond-WIMP experimental facilities (see for-
ward physics facilities list of points).

Summary plots to be included in this section:
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Figure 6: Comparison of two vector-mediated models, DMsimp and HAHM, corresponding
to simplified vector mediated and dark photon mediated models respectively. The mass
ratio between mediator and DM mass is fixed to 1

3
, allowing the mediator to decay to DM.

The conventional dark coupling constant α =
g2DM

4π
, with coupling gDM = 1.0. The models

have been generated with quark couplings gq = 0.01 for DMsimp and mixing ϵ = 0.01 for
HAHM. Expected and observed limits at 95% CL are plotted using the data from the CMS
analysis [CMS EXO 20 004] [? ] for the monojet final state, at 13 TeV using 137 fb−1 of
data. The blue relic lines represent the minimum parameter combinations which reproduce
the observed thermal relic density for each model, with the expected deviation for the dark
photon model around the Z resonance. Orange lines forecast the increased sensitivity of
this search for these two models at the HL-LHC, estimated by the effect on the cross section
of scaling up the luminosity. [? ]
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Figure 7: (Left) minimium mixing angle for the Higgs to invisible search when directly
applying this search to the singlet mixing model. The solid lines indicate the constraints
coming from indirecrt bounds on the Higgs couplings. (Right) minimum allowed mixing
angle for a model containing a Dark Higgs that mixes with the standard model Higgs
boson.
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Figure 8: Recast of Pseudoscalar simplified model bounds to the axion portal using the
gluon effective coupling.
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4 Conclusion
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