Particle Production Measurements using the MIPP Detector at Fermilab

Sonam Mahajan, Panjab University, Chandigarh, India (For the MIPP Collaboration) Under India-Fermilab Neutrino Collaboration

Outline of the talk

- Introduction
- Detector description
- Track and vertex reconstruction
- Preliminary results
- > Summary

Introduction

- MIPP stands for Main Injector Particle Production
- A fixed target hadron production experiment. Located in Meson Center beam line at Fermilab
- Operated from January 2005 to February 2006 and collected ~18 million events
- Primary Beam 120 GeV/c protons from Main Injector
- > Secondary Beams π^{\pm} , K[±], p and p from 5 to 90 GeV/c
- Targets Liquid Hydrogen (1.5 % λ_l, 14 cm long and 3.8 cm diameter), Be, <u>C</u> (2 % λ_l, 2 inch diameter and 1 cm thick), NuMI, Bi and U (A=1 to A=238)

Track and vertex reconstruction

Reconstructed 120 GeV/c proton on Carbon event

- TPC tracks combined with wire chambers hits to form global tracks
- Vertex constrained fit is done to form the vertices

Sonam Mahajan, New Perspectives, June 14th, 2012

Event selection for preliminary inelastic cross section measurements

Data sets used: 58 and 85 GeV/c proton on LH₂ target, 58 and 120 GeV/c proton on Carbon target

- Select interactions using interaction trigger
- Scintillator-based interaction trigger requires at least 3 charged particles for the scintillator to fire
- Incident beam should be within the target dimensions
- Empty target subtraction to reject the interactions with the scintillator
- Cross section =

 $\frac{N_{int}}{N_{beam} X N_t X \varepsilon}$

 $n_{t} = \frac{N_{A} x \text{ density } x \text{ thickness}}{\text{Atomic weight}}$

Beam spot position

Z vertex wrt target

45

Inelastic cross section for 58 & 85 GeV/c proton interactions on Liquid Hydrogen target

Energy (GeV/c)	PDG (mb)	DPMJET (mb)	MIPP (MC ε _{trig} applied) (mb)	MIPP (Data ε _{trig} applied) (mb)
58	31.13	31.6	31.68 ± 0.949(stat) +3.570 -4.103 (syst)	34.66 ± 1.038(stat) +4.036 -4.604 (syst)
85	31.42	31.8	36.95 ± 0.627(stat) +4.172 -4.794 (syst)	39.71 ± 0.674(stat) +4.581 (syst) -5.236

Inelastic cross section for 58 & 120 GeV/c proton interactions on Carbon target

Energy (GeV/c)	FLUKA (mb)	MIPP (MC ε _{trig} applied) (mb)	Other measurements (mb)
58	239.14	263.13 ± 8.240(stat) +25.63 (syst) -30.65	252 ± 4(stat) (Nucl. Phys. B61,(1973), 62) 222 ± 7(stat+syst) (Phys. Lett. B80,(1979), 319)
120	240.15	191.95 ± 2.180(stat) +18.92 -22.55 (syst)	Acceptance corrections still need to be applied for Carbon target. Work in progress

KNO-based technique to get trigger efficiency

 $\begin{array}{l} {\sf P}_n(s) = \frac{\Psi(n/{<}n(s))}{{<}n(s)>}, \frac{n}{{<}n(s)>} = Z \\ {\rm where} \ {\sf P}_n(s) \ {\rm is \ probability \ of} \\ {\rm producing \ n \ charged \ particles \ at} \\ {\rm a \ particular \ energy \ 's', \ <}n(s)> {\rm is} \\ {\rm average \ multiplicity \ and} \\ {\Psi(n/{<}n(s)) \ {\rm is \ the \ KNO \ function} \end{array}$

KNO Scaling relation:

 $\Psi(Z)$ = (3.97Z+33.7Z³-6.64Z⁵+0.332Z⁷) e^{-3.04Z}

- The method uses a K matrix K(n_o|n_t) probability of obtaining observed multiplicity n_o, given a true multiplicity n_t (trigger is not required)
- This matrix is multiplied by true probabilities from KNO function to get the predicted distribution
- The observed distribution is fitted to the predicted distribution to extract the trigger efficiencies
- The fit function is:

 χ^2 = (Observed – Predicted)²/ σ^2

 Trigger efficiencies are the parameters going to be fitted

KNO fit results

Comparison of trigger efficiencies

Comparison of MIPP data and MC cross sections using KNO-based trigger corrections

Inelastic cross section for p+p at 58 GeV/c = $33.24 \pm 0.997(\text{stat}) \pm 4.986(\text{syst}) \text{ mb}$ Inelastic cross section for p+C at 58 GeV/c = $274.51 \pm 8.592(\text{stat}) \pm 41.18(\text{syst}) \text{ mb}$ Inelastic cross section for p+C at 120 GeV/c = $210.47 \pm 2.399(\text{stat}) \pm 31.57(\text{syst}) \text{ mb}$

Discrepancies are found between the data and MC cross sections. Similar discrepancy was found between published data and DPMJET cross sections for pp interaction

Comparison of MIPP data cross sections with MC and other available cross sections

Summary

- Preliminary measurement of inelastic cross section for proton interaction at different beam energies with Liquid Hydrogen and Carbon target has been done
- Used KNO-based technique to get the trigger efficiency
- Compared MIPP data cross sections with MC and other available measurements
- Detailed study of systematic errors in progress
- Our next step will be the charged particle identification. π[±] and K[±] production cross sections as a function of p_T and x_F will be calculated
- ✓ Other analysis in progress: NuMI target analysis, K_S^0 , Λ^0 , $\overline{\Lambda}^0$ production, and cross section measurements from other targets

Backup

TPC:

- dE/dx depends on the particle type
- From Bethe Bloch formula: -dE/dx α z²/m_eβ²
- Particle separation: 0.1 1 GeV/c

RICH:

- $\cos\theta_c = 1/n\beta$
- RICH rings are found and fitted to a circle of radius

 $R \sim \sqrt{2(1-1/n\beta)}$

- π/K/p separation above ~ 20 GeV/c
- e/µ/π separation up to 12 GeV/c