

MINOS overview

TOF principle

AD setup

Measurement

Summary

Measuring electronic latencies in MINOS with Auxiliary Detector

Son V. Cao University of Texas at Austin (on behalf of the MINOS collaboration) June 14th 2012

FNAL2012 New Perspectives

Main Injector Neutrino Oscillation Search (MINOS)

MINOS overview

TOF principle

AD setup

Measurement

Summary

 ✓ High intensity muon neutrino beam produced at Fermilab

✓ Two detectors: reduce systematic errors, magnetized to distinguish ν_{μ} and $\bar{\nu}_{\mu}$ interactions

Near Detector to measure initial beam composition, predict no-oscillation
 spectrum at Far Detector

 ✓ Long baseline (734km) → Time of Flight (TOF) (1st measurement in 2007)

We revisit TOF with more statistics and refined understanding of system

Near det. 1.0 kton

Far det. 5.4 kton

Find δt_{21} to minimize the likelihood between $P_1(t_1)$ and $P_2(t_2)$

In 2007, used 473 FD even $\delta t = -126 \pm 32 (\text{stat.}) \pm 6$ $(v/c-1) = 5.1 \pm 2.9 \times 10$.)	δt=TOF _c -TOF _v	
Source of latency	Uncertainty 2007		
ND electronic latencies	32ns		Need to understand the
FD electronic latencies	3ns		timing system better!!!
F/N detector relative latencies	9ns		
PHYSICAL REVIEW D 76,	072005 (2007)		

6-Betch Spil

 t_2

Far Det.

Time shift by TOF,

~3GeV

Baseline \rightarrow TOF,

Distance d_{21}

3. Auxiliary Detector (AD)

ν beam

MINOS overview

TOF principle

AD setup

Measurement

Summary

Auxiliary Detector at the back end of Near Detector

Auxiliary Detector in the middle of two Super-Modules at Far Detector

Auxiliary Detector timestamps muon, resultant particle of neutrino interaction, and matches with events recorded in real detector

3. AD setup: event timestamp

- Passage of muon produces blue scintillation light
- Wavelength-shifting fiber absorbs and shifts scintillation light
- Signals are multiplied by photomultiplier (PMT) and used as "STOP" signal

Summary

AD setup

 Timestamp "STOP" signal with a "START" reference signal in each detector

Relative electronic latency between ADs and real detectors is calculated by event matching

Timing system overview

\$74

MINOS overview

- TOF principle
- AD setup
- ✓ Each spill lasts about 10us

beam

 \checkmark Accelerator generates signal,

named \$74, tell kicker magnet to

prepare extracting the proton

- Measurement✓At ND, Front-End boards start
window, labeled SGATE, toSummarycollect data
 - At FD, another window, labeled
 SS Window, is opened to capture
 data at the time spill arrives

4. AD measurement at Near

- Calculate likelihood of AD-ND distribution comparison as a function of SGATE-\$74 "offset"
- Likelihood reflects very well the bucket structure but the true peak is not clear.
- Measurement ✓ SGATE-\$74 time interval is not true offset. SGATE is programmably lined up with 53.1MHz clock tick.
 - The direct measurement of SGATE-\$74 time interval also shows two peaks separated by 19ns.

4. AD measurement at Near

- AD is synchronized to ND DAQ, permitted to match in event-by-event basis.
- MINOS overview

Measurement

- These peaks agrees with those from distribution comparison
- ✓ "Offset" measured by AD includes the electronic latencies of AD and ND
- Calculate AD-ND electronic latency by comparing with time interval from direct measurement (mean of the peak is used)

4. AD measurement at Far

Primary cosmic ray

- ✓ Use cosmic ray events for matching
- ✓ Use PPS signals from Cs Clock and GPS as "START" signals respectively for Auxiliary and Far detectors

Summary

- The ADs are necessary for mitigating the electronic readout latencies
- OF principle
- AD setup
- Measurement
- Summary

- ✓ The ADs has already installed and first results are used for TOF retrospective analysis in 2012
 - Full Spill approach: $TOF_v TOF_c = -18 \pm 11 \text{ (stat.)} \pm 29 \text{ (syst.)}$ nsWrapped Spill approach: $TOF_v TOF_c = -11 \pm 11 \text{ (stat.)} \pm 29 \text{ (syst.)}$ ns
 - ✓ The AD will be used in the next phase of Time Of Flight measurement

Source of latency	Uncertainty 2007	Uncertainty 2012
ND electronic latencies	32ns	4ns
FD electronic latencies	3ns	2ns
F/N detector relative latencies	9ns	1ns

Z

Backup: Systematic revisit

MINOS overview FOF principle	 (A) Resubetwee (B,D) Recables (F) Bett 	urvey the distance in two detectors e-estimate the length o er synchronization	Description A Distance between detector B ND Antenna fiber length C ND electronics latencies D FD Antenna fiber length E FD electronics latencies	Uncertainty (68% C.L.) ors 2 ns 27 ns 32 ns 46 ns 3 ns
	systems	S	F GPS and transceivers	12 ns
AD setup	• (C,E,G) measur	$\frac{\cos}{\cos}$ 9 ns e) 64 ns		
Measurement	system		PHISICAL REVIE	zw D 7 6, 072005 (2007)
Summary	2007 Analysis	Phase I (6 months)	Phase II (9-12 months)	Phase III (2013 and on MINOS+ era)
		Re-analysis existing data, reduce dominant systematic errors	Hardware improvement	More hardware improvement , update beam energy
	64 ns	18-33 ns	11-18 ns	2-7 ns

Z

MINOS

overview

Backup: two TOF approaches

- NuMI neutrinos spill lasts about 10us
- Spill subdivided into 1.619 us batches (5 or 6 batches)
- 95ns gap between batches

Full Spill approach:

- ND event time within spill predicts FD timing distribution
- ✓ Find best value of Time of Flight to match data

Wrapped Spill approach:

- Wrap events within batch in each detector
- ✓ Fit two gaps in two detector and subtract them

From PMT to Amplifier to discriminator to Logic Unit

NIM Model 612A: 12-Channel Photomultiplier Amplifie NIM 715: five-channel constant fraction timing discriminator

Model 364AL: Dual 4-Fold Majority Logic Units Model 1880B: Dual Visual Scaler Design slightly different