

Outline

- Booster Neutrino Beam (BNB)
- 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam
- 3. Community interest, conclusions

- Booster Neutrino Beam (BNB)
- 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam
- Community interest, conclusions

Booster Neutrino Beam

8.9 GeV/c momentum protons extracted from Booster, steered toward a Beryllium target in bunches of 5 × 10¹² at a maximum rate of 5 Hz

FNAL Booster target and horn

decay region

absorber

dirt

detector

primary beam (protons)

secondary beam (mesons)

tertiary beam (neutrinos)

Cherenkov-based detector filled with undoped mineral oil

Booster Neutrino Beam

Magnetic horn with reversible polarity focuses either neutrino or anti-neutrino parent mesons

("neutrino" vs "anti-neutrino" mode)

MiniBooNE Flux

* Flux prediction based exclusively on external data - no in situ tuning

HARP collaboration, Eur. Phys. J. C52 29 (2007

MiniBooNE collaboration, Phys. Rev. D79, 072002 (2009)

- Dedicated pion production data taken by HARP experiment to predict neutrino flux at MiniBooNE
- A spline fit to these data brings flux uncertainty to ~9%

MiniBooNE Flux

- * ~9% errors only true for pions produced in HARP-covered phase space
- Due to large proton background, pion production below
 30 mrad not reported
- * While not a serious issue for neutrino mode (top plot), severe complication for antineutrino mode (bottom)

MiniBooNE Flux

- 1. Booster Neutrino Beam (BNB)
- 2. Three measurements of ${f v}_{\mu}$ flux in BNB $\overline{{f v}}_{\mu}$ beam
- 3. Community interest, conclusions

- * Three independent and complementary measurements of the wrong-sign background:
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ- nuclear capture)

- * Three independent and complementary measurements of the wrong-sign background:
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture)

First measurement of the ν_μ content of a $\overline{\nu}_\mu$ beam using a non-magnetized detector.

Phys. Rev. D81: 072005 (2011)

- * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+)
 - * Crucial application of BooNE-measured ν_{μ} σ 's

* The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction

- * Three independent and complementary measurements of the wrong-sign background:
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture)

Fitting the outgoing muon angular distribution

* We form a linear combination of the neutrino and anti-neutrino content to compare with CCQE data:

Scale the $\overline{\nu}_{\mu}$ template by " $\alpha_{\overline{\nu}}$ "

Fitting the outgoing muon angular distribution

- * Results indicate the ν_{μ} flux is over-predicted by ~30%
- * Fit also performed in bins of reconstructed energy; consistent results indicate flux spectrum shape is well modeled

$\mathbf{E}_{\bar{\nu}}^{\mathbf{QE}}(\mathrm{MeV})$	$lpha_ u$	$lpha_{ar{ u}}$
< 600	0.65 ± 0.22	0.98 ± 0.18
600 - 900	0.61 ± 0.20	1.05 ± 0.19
> 900	0.64 ± 0.20	1.18 ± 0.21
Inclusive	0.65 ± 0.23	1.00 ± 0.22

Model dependence

* Though the ν_{μ} CCQE scattering template is known (from our measurement), the result is correlated to the (unknown) anti- ν_{μ} distribution and therefore biased

* In the future, thanks to current expt's, σ's will be much better known and this technique could be very powerful

- * Three independent and complementary measurements of the wrong-sign background.
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture)

$CC\pi^+$ sample formation

 u_{μ}

The neutrino induced resonance channel leads to three leptons above Cherenkov threshold

- 1. Primary muon
- 2. Decay electron
- 3. Decay positron

$CC\pi^+$ sample formation

 u_{μ}

Due to nuclear π⁻
 capture, the
 corresponding
 anti-neutrino
 interaction has
 only two:

- 1. Primary muon
- 2. Decay positron

$CC\pi^+ \nu_{\mu}$ flux measurement

- * With the simple requirement of two decay electrons subsequent to the primary muon, we isolate a sample that is ~80% neutrino-induced.
- * Data/simulation ratios in bins of reconstructed energy indicate the neutrino flux is overpredicted in normalization, while the spectrum shape is consistent with the prediction

E,∆ (MeV)	$ u_{\mu}\Phi$ scale
600 - 700	0.65 ± 0.10
700 - 800	0.79 ± 0.10
800 - 900	0.81 ± 0.10
900 - 1000	0.88 ± 0.11
1000 - 1200	0.74 ± 0.10
1200 - 2400	0.73 ± 0.15
Inclusive	0.76 ± 0.11

- * Three independent and complementary measurements of the wrong-sign background.
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture)

μ- capture measurement

- * We isolate a > 90% CC sample for both μ -only and μ +e samples
- * CC events typically observe both μ +e two reasons why we may not observe the decay electron:
 - 1. Michel electron detection efficiency
 - 2. μ^{-} nuclear capture (v_{μ} CC events only)

μ- capture measurement

* By requiring $(\mu\text{-only}/\mu\text{+e})^{\text{data}}$ = $(\mu\text{-only}/\mu\text{+e})^{\text{MC}}$ and normalization to agree in the $\mu\text{+e}$ sample we can calculate a \mathbf{v}_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$

$$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$

Predicted neutrino content in the µ+e sample, for example

μ- capture measurement

* By requiring (μ -only/ μ +e)^{data} = (μ -only/ μ +e)^{MC} and normalization to agree in the μ +e sample we can calculate a v_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$

$$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$

$$\alpha_{\nu} = 0.86 \pm 0.14$$

$$\alpha_{\bar{\nu}} = 1.09 \pm 0.23$$

Neutrino flux measurement summary

Discrepancy with prediction appears to be in normalization only - flux shape is well modeled

Strategy revisited

- * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+)
 - * Crucial application of BooNE-measured ν_{μ} σ 's

* The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction

Strategy revisited

* General strateay: isolate samples sensitive to the

Takes hadro-production data, uses it to place similar errors on the flux region not measured!

- 1. Booster Neutrino Beam (BNB)
- 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam
- 3. Community interest, conclusions

Who else cares?

- * Anyone using anti-v beams without B-fields!
 - * Nova
 - * T2K far detector
- * LBNE: yesterday we heard "preferred reconfiguration" is FD at Homestake without near detector. If no B-field, μ capture technique could be very powerful in WS discrimination (argon: ~75% capture, carbon: ~8%!)
 - * almost event-by-event discrimination without Bfield
- * Minerva: can get powerful stat increases if use µ's stopped in main detector

Conclusions

- * Though MiniBooNE is unmagnetized, modelindependent statistical techniques measure the ν_μ content in the ν_μ beam to ~15% uncertainty
- * This is the first demonstration of a set of techniques that could well be used in the near future for CP-violation, mass hierarchy and σ measurements

backup

Fitting the outgoing muon angular distribution

* Neutrino vs anti-neutrino CCQE cross sections differ exclusively by an interference term that changes sign between the two

$$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \boxplus B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$

* The divergence is more pronounced at higher Q², which is strongly correlated with backward scattering muons

How wrong signs contribute to flux

* Wrong-sign pions escape magnetic deflection and contribute to the anti-neutrino beam via low angle production

* In anti-neutrino mode low-angle production is a *crucial* flux region and we do not have a reliable prediction

Why so different?

* Cross section: at MiniBooNE energies (E,~1 GeV), neutrino cross section ~ 3x higher than anti-neutrino

$$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \pm B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$

* Flux: leading particle effect creates ~ 2x as many π + as π -

