Outline - Booster Neutrino Beam (BNB) - 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam - 3. Community interest, conclusions - Booster Neutrino Beam (BNB) - 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam - Community interest, conclusions #### Booster Neutrino Beam 8.9 GeV/c momentum protons extracted from Booster, steered toward a Beryllium target in bunches of 5 × 10¹² at a maximum rate of 5 Hz FNAL Booster target and horn decay region absorber dirt detector primary beam (protons) secondary beam (mesons) tertiary beam (neutrinos) Cherenkov-based detector filled with undoped mineral oil #### Booster Neutrino Beam Magnetic horn with reversible polarity focuses either neutrino or anti-neutrino parent mesons ("neutrino" vs "anti-neutrino" mode) #### MiniBooNE Flux * Flux prediction based exclusively on external data - no in situ tuning HARP collaboration, Eur. Phys. J. C52 29 (2007 MiniBooNE collaboration, Phys. Rev. D79, 072002 (2009) - Dedicated pion production data taken by HARP experiment to predict neutrino flux at MiniBooNE - A spline fit to these data brings flux uncertainty to ~9% #### MiniBooNE Flux - * ~9% errors only true for pions produced in HARP-covered phase space - Due to large proton background, pion production below 30 mrad not reported - * While not a serious issue for neutrino mode (top plot), severe complication for antineutrino mode (bottom) #### MiniBooNE Flux - 1. Booster Neutrino Beam (BNB) - 2. Three measurements of ${f v}_{\mu}$ flux in BNB $\overline{{f v}}_{\mu}$ beam - 3. Community interest, conclusions - * Three independent and complementary measurements of the wrong-sign background: - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ- nuclear capture) - * Three independent and complementary measurements of the wrong-sign background: - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture) First measurement of the ν_μ content of a $\overline{\nu}_\mu$ beam using a non-magnetized detector. Phys. Rev. D81: 072005 (2011) - * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+) - * Crucial application of BooNE-measured ν_{μ} σ 's * The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction - * Three independent and complementary measurements of the wrong-sign background: - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture) # Fitting the outgoing muon angular distribution * We form a linear combination of the neutrino and anti-neutrino content to compare with CCQE data: Scale the $\overline{\nu}_{\mu}$ template by " $\alpha_{\overline{\nu}}$ " # Fitting the outgoing muon angular distribution - * Results indicate the ν_{μ} flux is over-predicted by ~30% - * Fit also performed in bins of reconstructed energy; consistent results indicate flux spectrum shape is well modeled | $\mathbf{E}_{\bar{\nu}}^{\mathbf{QE}}(\mathrm{MeV})$ | $lpha_ u$ | $lpha_{ar{ u}}$ | |--|-----------------|-----------------| | < 600 | 0.65 ± 0.22 | 0.98 ± 0.18 | | 600 - 900 | 0.61 ± 0.20 | 1.05 ± 0.19 | | > 900 | 0.64 ± 0.20 | 1.18 ± 0.21 | | Inclusive | 0.65 ± 0.23 | 1.00 ± 0.22 | #### Model dependence * Though the ν_{μ} CCQE scattering template is known (from our measurement), the result is correlated to the (unknown) anti- ν_{μ} distribution and therefore biased * In the future, thanks to current expt's, σ's will be much better known and this technique could be very powerful - * Three independent and complementary measurements of the wrong-sign background. - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture) # $CC\pi^+$ sample formation u_{μ} The neutrino induced resonance channel leads to three leptons above Cherenkov threshold - 1. Primary muon - 2. Decay electron - 3. Decay positron # $CC\pi^+$ sample formation u_{μ} Due to nuclear π⁻ capture, the corresponding anti-neutrino interaction has only two: - 1. Primary muon - 2. Decay positron # $CC\pi^+ \nu_{\mu}$ flux measurement - * With the simple requirement of two decay electrons subsequent to the primary muon, we isolate a sample that is ~80% neutrino-induced. - * Data/simulation ratios in bins of reconstructed energy indicate the neutrino flux is overpredicted in normalization, while the spectrum shape is consistent with the prediction | E,∆ (MeV) | $ u_{\mu}\Phi$ scale | |-------------|----------------------| | 600 - 700 | 0.65 ± 0.10 | | 700 - 800 | 0.79 ± 0.10 | | 800 - 900 | 0.81 ± 0.10 | | 900 - 1000 | 0.88 ± 0.11 | | 1000 - 1200 | 0.74 ± 0.10 | | 1200 - 2400 | 0.73 ± 0.15 | | Inclusive | 0.76 ± 0.11 | - * Three independent and complementary measurements of the wrong-sign background. - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture) #### μ- capture measurement - * We isolate a > 90% CC sample for both μ -only and μ +e samples - * CC events typically observe both μ +e two reasons why we may not observe the decay electron: - 1. Michel electron detection efficiency - 2. μ^{-} nuclear capture (v_{μ} CC events only) #### μ- capture measurement * By requiring $(\mu\text{-only}/\mu\text{+e})^{\text{data}}$ = $(\mu\text{-only}/\mu\text{+e})^{\text{MC}}$ and normalization to agree in the $\mu\text{+e}$ sample we can calculate a \mathbf{v}_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$ $$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$ Predicted neutrino content in the µ+e sample, for example ## μ- capture measurement * By requiring (μ -only/ μ +e)^{data} = (μ -only/ μ +e)^{MC} and normalization to agree in the μ +e sample we can calculate a v_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$ $$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$ $$\alpha_{\nu} = 0.86 \pm 0.14$$ $$\alpha_{\bar{\nu}} = 1.09 \pm 0.23$$ #### Neutrino flux measurement summary Discrepancy with prediction appears to be in normalization only - flux shape is well modeled ## Strategy revisited - * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+) - * Crucial application of BooNE-measured ν_{μ} σ 's * The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction # Strategy revisited * General strateay: isolate samples sensitive to the Takes hadro-production data, uses it to place similar errors on the flux region not measured! - 1. Booster Neutrino Beam (BNB) - 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam - 3. Community interest, conclusions #### Who else cares? - * Anyone using anti-v beams without B-fields! - * Nova - * T2K far detector - * LBNE: yesterday we heard "preferred reconfiguration" is FD at Homestake without near detector. If no B-field, μ capture technique could be very powerful in WS discrimination (argon: ~75% capture, carbon: ~8%!) - * almost event-by-event discrimination without Bfield - * Minerva: can get powerful stat increases if use µ's stopped in main detector #### Conclusions - * Though MiniBooNE is unmagnetized, modelindependent statistical techniques measure the ν_μ content in the ν_μ beam to ~15% uncertainty - * This is the first demonstration of a set of techniques that could well be used in the near future for CP-violation, mass hierarchy and σ measurements # backup # Fitting the outgoing muon angular distribution * Neutrino vs anti-neutrino CCQE cross sections differ exclusively by an interference term that changes sign between the two $$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \boxplus B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$ * The divergence is more pronounced at higher Q², which is strongly correlated with backward scattering muons #### How wrong signs contribute to flux * Wrong-sign pions escape magnetic deflection and contribute to the anti-neutrino beam via low angle production * In anti-neutrino mode low-angle production is a *crucial* flux region and we do not have a reliable prediction # Why so different? * Cross section: at MiniBooNE energies (E,~1 GeV), neutrino cross section ~ 3x higher than anti-neutrino $$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \pm B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$ * Flux: leading particle effect creates ~ 2x as many π + as π -