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1.  Booster Neutrino Beam (BNB) 

2.  Three measurements of νµ flux in BNB νµ beam 

3.  Community interest, conclusions 
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Booster Neutrino Beam 
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MiniBooNE Flux 

  Flux prediction based 
exclusively on external data - 
no in situ tuning 

  Dedicated pion production 
data taken by HARP 
experiment to predict 
neutrino flux at MiniBooNE 

  A spline fit to these data 
brings flux uncertainty to ~9%  6 
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MiniBooNE collaboration,  
Phys. Rev. D79, 072002 (2009)   

HARP collaboration, 
Eur. Phys. J. C52 29 (2007) 



  ~9% errors only true for 
pions produced in 
HARP-covered phase 
space 

  Due to large proton 
background, pion 
production below       
30 mrad not reported 

  While not a serious issue 
for neutrino mode (top 
plot), severe 
complication for anti-
neutrino mode 
(bottom) 
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Not only does the anti-ν 
data have a large ν 

component, the prediction 
is completely unreliable. 

This motivates a dedicated study of 
the νµ content of the beam  
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Wrong-sign measurements 

  Three independent and complementary 
measurements of the wrong-sign background: 

1.  Fitting the angular distribution of the CCQE 
sample for the neutrino and anti-neutrino 
content 

2.  Comparing predicted to observed event 
rates in the CCπ+ sample  

3.  Measuring how often muon decay electrons 
are produced (exploits µ- nuclear capture) 
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First measurement of the νµ content of a νµ beam 
using a non-magnetized detector.   

Phys. Rev. D81: 072005 (2011) 



Wrong-sign measurements 

  General strategy:  isolate samples sensitive to the 
νµ beam content, apply the measured cross 
sections from neutrino mode (CCQE, CCπ+) 
  Crucial application of BooNE-measured νµ σ’s  

  The level of data-simulation agreement then 
reflects the accuracy of the νµ flux prediction  
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  We form a linear combination of the neutrino 
and anti-neutrino content to compare with 
CCQE data: 
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Fitting the outgoing muon 
angular distribution 



  Results indicate the νµ 
flux is over-predicted 
by ~30% 

  Fit also performed in 
bins of reconstructed 
energy; consistent 
results indicate flux 
spectrum shape is 
well modeled 

< 600 0.65 ± 0.22 0.98 ± 0.18 

600 - 900 0.61 ± 0.20 1.05 ± 0.19 

> 900 0.64 ± 0.20 1.18 ± 0.21 

Inclusive 0.65 ± 0.23 1.00 ± 0.22 

EQE
ν (MeV) αν αν̄
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Fitting the outgoing muon 
angular distribution 



Model dependence 
  Though the νµ CCQE scattering template is known 

(from our measurement), the result is correlated to 
the (unknown) anti-νµ distribution and therefore 
biased 

16 

!!cos 

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1
10

2
10

3
10

!"

!"

Total MC

Data

Before Fit MC Contributions                                                  
:        27.3%!"WS 

:         72.7%!"RS 

/dof:        34/23
2
#

? BEFORE FIT 
DISTRIBUTIONS 

Ev
e

n
ts

 
  In the future, 

thanks to 
current expt’s, 
σ’s will be much 
better known 
and this 
technique 
could be very 
powerful 

? 



Wrong-sign measurements 

  Three independent and complementary 
measurements of the wrong-sign background: 
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Δ   The neutrino 
induced 
resonance 
channel leads to 
three leptons 
above Cherenkov 
threshold 
1.  Primary muon 
2.  Decay electron 
3.  Decay positron  

CCπ+ sample formation 
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  Due to nuclear π- 
capture, the 
corresponding 
anti-neutrino 
interaction has 
only two: 
1.  Primary muon 

2.  Decay positron  

CCπ+ sample formation 

~100% 
nuclear 
capture 
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  With the simple requirement of two decay electrons 
subsequent to the primary muon, we isolate a sample 
that is ~80% neutrino-induced. 
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EνΔ (MeV) νµ Φ scale


600 - 700 0.65 ± 0.10 

700 - 800 0.79 ± 0.10 

800 - 900 0.81 ± 0.10  

900 - 1000 0.88 ± 0.11 

1000 - 1200 0.74 ± 0.10 

1200 - 2400 0.73 ± 0.15 

Inclusive 0.76 ± 0.11 

  Data/simulation ratios in 
bins of reconstructed 
energy indicate the 
neutrino flux is over-
predicted in 
normalization, while the 
spectrum shape is 
consistent with the 
prediction 

CCπ+ νµ flux measurement 
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µ- capture measurement 

  We isolate a > 90% CC sample for both µ-only and  
µ+e samples  

  CC events typically observe both µ+e - two reasons 
why we may not observe the decay electron: 

1.  Michel electron detection efficiency 

2.  µ- nuclear capture (νµ CC events only) 
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µ- capture measurement 

  By requiring (µ-only/µ+e)data = (µ-only/µ+e)MC and 
normalization to agree in the µ+e sample we can 
calculate a νµ flux scale        and a rate scale   
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µ+e sample, for example 
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µ- capture measurement 

  By requiring (µ-only/µ+e)data = (µ-only/µ+e)MC and 
normalization to agree in the µ+e sample we can 
calculate a νµ flux scale        and a rate scale   

 Results: 
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αν αν̄

µ

µ + e

data
=

(
αν νµ + αν̄ ν̄µ

αν νµ+e + αν̄ ν̄µ+e

)MC

αν = 0.86± 0.14
αν̄ = 1.09± 0.23

PRELIMINARY 
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Neutrino flux measurement summary 

25 

  Discrepancy with prediction appears to be in normalization 
only - flux shape is well modeled 

νµ content of νµ beam 

PRELIMINARY 



Strategy revisited 

  General strategy:  isolate samples sensitive to the 
νµ beam content, apply the measured cross 
sections from neutrino mode (CCQE, CCπ+) 
  Crucial application of BooNE-measured νµ σ’s  

  The level of data-simulation agreement then 
reflects the accuracy of the νµ flux prediction  
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Takes hadro-production 
data, uses it to place similar 

errors on the flux region     
not measured!  
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Who else cares? 

  Anyone using anti-ν beams without B-fields! 
  Noνa 
  T2K far detector 

  LBNE: yesterday we heard “preferred 
reconfiguration” is FD at Homestake without near 
detector. If no B-field, µ- capture technique 
could be very powerful in WS discrimination 
(argon: ~75% capture, carbon: ~8%!) 
  almost event-by-event discrimination without B-

field 

  Minerνa: can get powerful stat increases if use 
µ’s stopped in main detector 
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Conclusions 

  Though MiniBooNE is unmagnetized, model-
independent statistical techniques measure 
the νµ content in the νµ beam to ~15% 
uncertainty  

  This is the first demonstration of a set of 
techniques that could well be used in the 
near future for CP-violation, mass hierarchy 
and σ measurements 
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backup 

31 



dσ

dQ2
=

M2G2
F |Vud|2

8πE2
ν

[
A

(
Q2

)
± B

(
Q2

) (
s− u

M2

)
+ C

(
Q2

) (
s− u

M2

)2
]

Fitting the outgoing muon 
angular distribution 

  Neutrino vs anti-neutrino CCQE cross sections 
differ exclusively by an interference term that 
changes sign between the two 

  The divergence is 
more pronounced 
at higher Q2, which 
is strongly 
correlated with 
backward 
scattering muons   
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  Wrong-sign pions 
escape magnetic 
deflection and 
contribute to the 
anti-neutrino 
beam via low 
angle production 

How wrong signs contribute to flux 

This motivates a dedicated study of νµ content of the beam 33 
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  In anti-neutrino mode low-angle production is a crucial 
flux region and we do not have a reliable prediction 



Why so different? 

  Flux: leading particle 
effect creates ~ 2x as 
many π+ as π- 

  Cross section: at MiniBooNE  energies (Eν~1 GeV), 
neutrino cross section ~ 3x higher than anti-neutrino 
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