Study of v_{μ} + e elastic scattering in MINERvA experiment at NuMI beam line

Jaewon Park
University of Rochester

Goal: Flux Measurement From Event Counting

- Well known pure leptonic process is used to get v_{μ} flux information
- v_{μ} scattering off on light electron has small center of mass energy, so it can have only small momentum transfer, Q^2 , which produces very forward electron final state

- Electron neutrino flux will be measured using charged current quasielastic (CCQE) process
- If recoiled nucleon is not observed, two processes look similar

Signal and Background Processes

It produces a <u>very forward electron</u>
It can be separated from background using $E\theta^2$

Check vertex activity to reject

- 1. Only one of two gammas is detected
- <u>dE/dx at the beginning</u> is different from electron
- 2. High energy π^0 decays into two gammas with very small opening angle
- Check <u>transverse energy distribution</u>

E: Energy of electron candidate

 θ : Theta of electron candidates w.r.t. beam direction

MINERVA Detector

• MINERvA detector is made of a stack of "MODULES" (See next slide)

Detector Module

• X, U, V coordinates are combined to make 3D tracking

Single EM Shower Reconstruction

- Once vertex and direction is known, shower cone can be applied
- When (thin) track finder fails on fuzzy shower, isolated blob finder is used and then track fitter can handle fuzzy shower

MC Reconstruction Efficiency

- Electron particle gun is used to calculate efficiency
 - Energy: $0.2 \sim 5$ GeV, Theta: $0\sim45$ degree
- Reconstruction efficiency is 0.96 for small angle (angle <10 degree, energy>400MeV)

MC Angular and Energy Resolution

- Precise angular reconstruction is critical to separate v_{μ} e elastic scattering from v_{e} CCQE
- Energy resolution: 6~ 7%

dE/dx for Electron and Gamma Discrimination

- Neutral current π^0 is decayed into energetic gamma + tiny energy gamma
- dE/dx at the beginning of shower is different for electron and gamma
 - Electron loses energy like MIP (Minimum Ionization Particle)
 - Gamma loses energy like twice MIP

Data Validation using Michel electron

Energy scale stability (data)

- Michel electron is nice to tool to check calibration
 - Michel energy MC/data comparison
 - Module to module variation is consistent with muon dE/dx
 - Energy scale is stable over time

Small Sample Result

- Beam configuration: Low energy neutrino beam
- ~4% of accumulated data is used for comparison
- MC sample size: ~30% of collected data
- v_e CCQE (Charged Current Quasielastic) process is suppressed because single electron-like events are selected

Signal Events

First two bins are signal rich

- Number of v e scattering ($v_{\mu} e$ and $v_{e} e$) events in this 30% MC: 52 ± 9
 - 17% statistical error
- The projected sample will have ~3 times signal/background (173/47).
- That measurement would produce a statistical uncertainty of 8.6%

Summary

- Good single electron reconstruction is achieved.
- Efficient background rejection is made to isolated *v e* scattering events
- Preliminary data and MC comparison looks promising
- Projected measurement of v e scattering events using 30%
 MC shows constraint on flux with 8.6% statistical error
- This method of constraining beam flux will be more powerful with higher event rate in medium energy beam in the future

(Backup Slides)

Event Display (Data)

