SEARCH FOR THE SM HIGGS IN $\tau_e \tau_h$ jj FINAL STATES

Ian Howley on behalf of the DØ Collaboration New Perspectives 2012

June 14, 2012

HIGGS SIGNALS

- $\diamond H \rightarrow \ell \tau jj$ is sensitive to 3 production channels, that give 1 e/μ , 1 hadronic τ , 2 jets, and missing energy. (referred to as *etau* and mutau)
- \diamond We combined our final limits with a separate search of $\mu\tau$ with 0 jets

Associated Production Gluon-Gluon Fusion (GGF) Vector-Boson Fusion (VBF)

Our final state is sensitive to both $H \to \tau \tau$ and $H \to WW$.

HIGGS SIGNALS II

 \diamond At $\sqrt{s} = 2 \text{TeV GGF has the}$ largest cross section $\sim 1 \text{fb}^{-1}$

 \diamond At $m_H = 135 \text{ GeV } H \rightarrow WW$ becomes the dominant decay.

HIGGS SIGNALS III

- ♦ There are 9 physical processes, in two large mass ranges
- It is important to know the dominant process in the low and high mass ranges
- The large number of channels increases the sensitivity, but complicate the separation of signals from background

Name	Decay
	low mass
HZ	$H(bb) + Z(\tau\tau)$
ZH	$Z(qq) + H(\tau\tau)$
WH	$W(qqt) + H(\tau\tau)$
VBF	$qq' \rightarrow qq' + H(\tau\tau)$
GGF	$gg \rightarrow H(\tau\tau) + 2jets$
	high mass
ZH_{WW}	Z(qq) + H(WW)
WH_{WW}	W + H(WW)
VBF _{WW}	$qq' \rightarrow qq' + H(WW)$
GGF _{WW}	$gg \rightarrow H(WW) + 2jets$

Hadronic τ Decays

- Hadronic τ decays are reconstructed as narrow jets $dR = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2} = 0.4$
- ♦ It is useful to classify the main hadronic decays based on their detector signature
- We employ a neural network (NN_{τ}) to distinguish τ 's from fakes

Physical Process	BR
$ au^{\pm} ightarrow \pi^{\pm} u_{ au}$	10.9%
$ au^{\pm} ightarrow ho^{\pm} (ightarrow \pi^0 \pi^{\pm}) u_{ au}$	36.5%
$ au^{\pm} ightarrow (\geq 2\pi^0) \pi^{\pm} u_{ au}$	
$ au^\pm ightarrow a_1^\pm (ightarrow \pi^\pm \pi^\mp \pi^\pm) u_ au$	13.9%
	$ \tau^{\pm} \to \pi^{\pm} \nu_{\tau} \tau^{\pm} \to \rho^{\pm} (\to \pi^{0} \pi^{\pm}) \nu_{\tau} \tau^{\pm} \to (\geq 2\pi^{0}) \pi^{\pm} \nu_{\tau} $

Background

- There are 5 backgrounds considered:
 - $hd Z
 ightarrow ee/\mu\mu$ and Z
 ightarrow au au (irreducible)
 - \star Z
 ightharpoonup ee dominant in the e au channel
 - \triangleright *W*+jets is the primary background for the $\mu \tau 0$ channel
 - \triangleright $t\bar{t}$ contributes $\sim 15\%$
 - ▷ Di-boson contribution is quite small
 - ightharpoonup Multi-jet (MJ) arise from QCD heavy flavor events, where jets fake either the au or the electron
 - * It is instrumentally induced and hard to simulate, and thus estimated from data
- We use standard definitions of p_T η, and other variables to ensure we use good quality electrons, muons, taus, jets and missing energy

MJ DEFINITION

- \diamond We define a set of multi-jet enriched events 'MJ Control' by reversing the τ and lepton quality
- \diamond Subtract all other SM backgrounds to acquire the MJ shape (\mathcal{M})
- \diamond The number of MJ events in the signal sample, $\mathcal{N}_{\mathrm{OS}}^{\mathrm{MJ}}$, are scaled by the ratio ho_i

$$\mathcal{N}_{\mathrm{OS}}^{\mathrm{MJ}} =
ho_i (\mathcal{N}_{\mathrm{SS}}^{\mathrm{DATA}} - \mathcal{N}_{\mathrm{SS}}^{\mathrm{SM}})$$
 $ho_i = rac{\mathcal{M}_{\mathrm{OS}}}{\mathcal{M}_{\mathrm{SS}}} \quad i = 1, 2, 3 \, (au - type)$
 $\diamond \; \mathsf{MJ} \; \mathsf{systematics} \; \mathsf{are}$

estimated from the 'MJ

I. HOWLEY (UT ARLINGTON)

Test' sample

$Z \rightarrow ee$ Supression

- \diamond The $e\tau$ channel is overwhelmed by $Z \rightarrow ee$ background
- We employ a series of cuts to reduce the background contribution
- We remove events in the following regions:

Type 1: $1.5 < |\eta_d^{\tau}| < 1.05$

Type 2: TauNNel < 0.95

Type 2: $0.9 < |\phi_{PS}| < 0.1$

Data and MC Agreement

- The background contributions to each channel are different.
- It is very important to check the MC modeling before moving to a multivariate analysis

Backgrounds

Multivariate Analysis

- A simple cut based approach is inadequate to observe a possible excess of events
- Instead we utilize a Boosted Decision Tree (BDT) that uses shape differences and correlations of many variables to differentiate signal-like from background-like
- 17 variables well modeled variables are input to a BDT
- Unequal binning of the final discriminant is used to ensure a continuous background distribution

LIMITS

- \diamond The $e\tau$ (4.3fb⁻¹) channel is combined with the $\mu\tau$ 2jet (7.2fb⁻¹) and $\mu\tau$ 0jet (7.3fb⁻¹) channels to produce our final limit
- \diamond We have relatively flat sensitivity across the full mass region, and set upper limits on SM Higgs cross section of \sim 10 times the SM

- \diamond $H \rightarrow au au$ involves several production modes, and has a pervasive Z+ jets background
- Our recent publication (arXiv:1203.4443v1 [hep-ex]) uses up to 7.3fb⁻¹ of data, and was included in the Moriond 2012 Tevatron combination result (FERMILAB-CONF-12-065-E)
- \diamond This is the first publication to included the $e\tau$ channel at DØ
- Significant improvements to the limits are expected for ICHEP 2012

SEARCH FOR THE SM HIGGS IN $\tau_e \tau_h$ jj Final States

Ian Howley on behalf of the DØ Collaboration New Perspectives 2012

June 14, 2012

Thank you

