Search for Anomalous Wtb Couplings in Single Top Quark Production at DØ

Jyoti Joshi
(University of California, Riverside)
for the DØ collaboration

New Perspectives 2012
14th June, 2012
Fermilab
Outlines

- Tevatron and DØ detector
- Introduction to Anomalous Wtb Couplings
- Analysis Strategy
- Multivariate Analysis Technique
- Discriminant Outputs and Limit Calculation
- Conclusions
Tevatron and DØ detector

Tevatron

Today’s results

Single top observation

Run II Integrated Luminosity

Jyoti Joshi, New Perspectives, 14th June 2012
New Physics can manifest itself either in terms of new particles or modified couplings that change the cross sections of existing processes and angular distributions of SM processes. Modifications to top quark interactions, in particular with weak gauge bosons, could yield the first signs of new physics.

Single top production cross section is directly proportional to the square of CKM matrix element V_{tb} times the Wtb coupling.

DØ has recently shown an improved measurement of single top quark production cross section:

We use the same 5.4 fb$^{-1}$ dataset and event selection to look for anomalous Wtb couplings.
Anomalous Wtb Couplings in Single Top

The large mass of the top quark implies large couplings to the EWSB sector of the SM and may have non-SM interactions with the weak gauge bosons.

Single top quark production provides a unique probe to study top quark interactions with W boson.

The most general, CP-conserving Wtb vertex can be parameterized with an effective Lagrangian by:

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^\mu (L_V P_L + R_V P_R) tW^-_\mu - \frac{g}{\sqrt{2}} \bar{b} \sigma^{\mu\nu} q_\nu \left(\mathcal{P}_L + R_T P_R \right) tW^-_\mu + h.c.$$

Where, $L_{V,T} = V_{tb} f^{L_{V,T}}$ and $R_{V,T} = V_{tb} f^{R_{V,T}}$.

Within Standard Model, $L_V \equiv V_{tb} \approx 1$ and $R_V = L_T = R_T = 0.$
Event kinematics and angular distributions are sensitive to the presence of anomalous couplings
Search Strategy

We have studied the Wtb couplings and set new limits on anomalous contributions to them.

Out of 4 couplings (L_V, R_V, L_T, R_T), we consider three pairing scenarios with left-handed vector coupling (SM):

$$(L_V, R_V) ; (L_V, L_T) ; (L_V, R_T)$$

(assuming that for each case, other two non-SM couplings are negligible)

Some assumptions ::

- Single top quarks are produced exclusively through W boson exchange.
- Other single top quark production mechanisms such as FCNC, decay of new scalar boson or exchange of new vector boson are not considered.
- $|V_{td}|^2 + |V_{ts}|^2 << |V_{tb}|^2$; Wtb vertex dominates top quark production and decay.
Samples and Event Selection

- Single top quark signal events with the SM and anomalous Wtb couplings are modeled using the COMPHEP-SINGLETOP event generator.

- Main background contributions $W+\text{jets}$, $t\bar{t}$ and $Z+\text{jets}$ are modeled with ALPGEN+PYTHIA; multijets background is modeled directly with an independent data sample and dibosons are modeled using PYTHIA.

- **Select One** high-p_T isolated electron or muon with $p_T > 15$ GeV; Missing $E_T > 15$ GeV; 2-4 jets with at least one jet originating from a b quark.
Multivariate Analysis

Bayesian Neural Networks (BNN) multivariate technique is used to discriminate between signal and background.

Three separate BNN training scenarios are studied:

1. **L_v vs. R_v**: Signal - single top sample with right-handed vector coupling i.e, $f^{R_v} = 1$
 Backgrounds - L_v, W+jets, $t\bar{t}$, Z+jets, diboson, multijets

2. **L_v vs. L_T**: Signal - single top sample with left-handed tensor coupling i.e, $f^{L_T} = 1$
 Backgrounds - L_v, W+jets, $t\bar{t}$, Z+jets, diboson, multijets

3. **L_v vs. R_T**: Signal - single top sample with right-handed tensor coupling i.e, $f^{R_T} = 1$
 Backgrounds - L_v, W+jets, $t\bar{t}$, Z+jets, diboson, multijets

* Analysis is carried out in 6 independent channels based on the number of identified b jets (1 and 2) and jet multiplicity (2, 3 and 4), because the backgrounds are different in each channel.
Discriminant Outputs

LV vs. RV

- DØ 5.4 fb⁻¹
- Rᵥ tb+tqb (×20)
- SM tb+tqb (×20)
- SM tb+tqb
- W+jets
- tt
- Multijets

LV vs. LT

- DØ 5.4 fb⁻¹
- Lₜ tb+tqb (×5)
- SM tb+tqb (×5)
- SM tb+tqb
- W+jets
- tt
- Multijets

LV vs. RT

- DØ 5.4 fb⁻¹
- Rₜ tb+tqb (×5)
- SM tb+tqb (×5)
- SM tb+tqb
- W+jets
- tt
- Multijets
A Bayesian statistical approach is followed to compare data to the signal predictions given by different anomalous couplings using BNN discriminant output distributions.

We compute a 2D posterior probability as a function of $|V_{tb} \cdot f^L_V|^2$ and $|V_{tb} \cdot f_x|^2$, where $V_{tb} \cdot f_x$ is one of the two non-SM couplings $X = \{R_v, L_T\}$.

For the $(L_V \text{ vs. } R_T)$ scenario, the two couplings interfere and hence to account for the effect of interference a third sample is used for which both couplings $f^L_V = 1$ and $f^{R_T} = 1$.

A uniform prior probability of non-negative values of SM and non-SM couplings is used.

Systematic uncertainties are treated as Gaussian nuisance parameters.

We do not observe any significant deviations from the SM expectations.

We compute 95% C.L. upper limits on the anomalous couplings by integrating out the left-handed vector coupling to get a 1-D posterior probability density.
Conclusions

Single top quark production provides us with a window onto the top quark electroweak interaction.

We can also probe for extensions of the electroweak interaction by searching for anomalous single top quark production.

We find no evidence for anomalous couplings and set 95% C.L. limits on these couplings.

These limits represent improvements by a factor of approx. 2.5 to 5.0 as compared to the previous limits.

\[|R_V|^2 < 0.93 \text{ @ 95\% C.L.} \]
\[|L_T|^2 < 0.06 \text{ @ 95\% C.L.} \]
\[|R_T|^2 < 0.13 \text{ @ 95\% C.L.} \]