Search at CMS from the Bottom Up
(Calibration of the CMS Electromagnetic Calorimeter at the LHC)

Marat Gataullin (Caltech)
on behalf of the CMS Collaboration
New Perspectives 2012
June 14th, Fermilab
The Hunt for $H \rightarrow \gamma \gamma$

- Most sensitive channel at mass below ~130 GeV (as yet not excluded)

- Small branching ratio, but very clean signature: search for a narrow resonance of two high-E_T photons over a non-resonant background of genuine or fake di-photons

- Discovery potential depends mainly on
 1) Invariant mass resolution: photon energy and position resolution are important
 2) Background rejection (π^0/γ separation)
CMS ECAL: 75,848 PbWO$_4$ Crystals

Barrel: $|\eta| < 1.48$
- 61,200 crystals or 85×2 ϕ-rings of 360 crystals each at the same η
- $(2.2 \times 2.2 \times 23 \text{ cm}^3) \sim 26X_0$

Endcaps: $1.48 < |\eta| < 3.0$
- 14,648 crystals total (39 \times 2 effective ϕ-rings)
- $(3.0 \times 3.0 \times 22 \text{ cm}^3) \sim 25X_0$

Preshower: $1.65 < |\eta| < 2.6$
- $3X_0$, 2 planes of Pb/Si strips
- $1.90 \times 61 \text{ mm}^2$ x-y view

Other CMS characteristics of note
Tracker coverage: $|\eta| < 2.5$
CMS Magnetic field: $B = 3.8 \text{ T}$
Barrel consists of 170 φ-rings of 360 crystals each: a crystal is uniquely characterized by η-index (-85 to 85) and φ-index (1-360). $H \rightarrow \gamma\gamma$ is the focus channel for the CMS ECAL: the central barrel is the best region for the Higgs search.
In CMS, the photon/electron energy is measured via

$$E_{e/\gamma} = G \cdot F_{e/\gamma} \cdot \sum_i (c_i \cdot s_i \cdot A_i)$$

- A_i: Single channel amplitude (ADC counts)
- S_i: Single channel time-dependent correction for response variations
 Obtained using a dedicated laser monitoring system
- c_i: Intercalibration constant: relative single channel response factor
- $F_{e/\gamma}$: Particle energy correction (detector geometry, clustering, etc…)
 Obtained using simulations and electrons from Z and W decays
- G: Global ECAL energy scale

This talk: how we measure the global energy scale and intercalibrate the 75,848 crystals of the CMS ECAL.
1) \(\pi^0/\eta \rightarrow \gamma \gamma \) method: equalizes measured \(\pi^0/\eta \) peaks for individual crystals.
2) \(\phi \)-symmetry: invariance around the beam axis of the energy flow in zero-bias events to intercalibrate crystal response in each of 248 \(\phi \)-rings.
3) single-electrons from W decays: use E/p ratio where p is measured in the tracker and E in the ECAL. In addition to single-crystal intercalibration, this method also intercalibrates the average response of 248 \(\phi \)-rings.
4) di-electrons from Z decays: use measured invariant mass to obtain the global scale corrections and study the ECAL resolution.

- Precalibration in 2000-2009 performed using test beams, cosmic rays, radiation source and “beam splashes” during the first LHC runs.
- \(\sim 30\% \) of the Barrel and 400 crystals in the endcaps were calibrated in the test beams to the design-goal single-crystal precision of 0.5%.
Dedicated Calibration Streams: $\pi^0/\eta \rightarrow \gamma\gamma$ and ϕ-symmetry

- Each event passing L1 triggers contains a few π^0's/event: no need to trigger on π^0's
- Useful $\pi^0(\eta) \rightarrow \gamma\gamma$ decays selected online using only crystal-level information from localized regions of ECAL. Store only information about 20-30 crystals per event.
- Sustained rate in Summer-Fall 2011: ~7 kHz (including background).
- Similarly, for ϕ-symmetry stream only crystals with energy depositions above a threshold are stored for events passing L1 ZeroBias triggers.
π^0/η→γγ Selection and Calibration

Samples in the Barrel

Based on local, ECAL variables — suitable for online filter farm.

- **Kinematics:** $P_T(\gamma) > 0.8$ GeV, $P_T($pair$) > 2$ GeV (> 3 GeV for η decays).
- **Photon shower-shape cuts:** $S_4/S_9 > 0.83$, where the sums S_i are defined with 2x2 and 3x3 crystal matrices.
- **Isolation cut** optimized to remove pairs with converted photons.

In 2011, collected about 10^{10} $\pi^0\rightarrow\gamma\gamma$ and 10^9 $\eta\rightarrow\gamma\gamma$ decays in the barrel region. Peak resolution dominated by the error on the opening angle.
The single-crystal calibration precision in the barrel is dominated by systematics and was found to be 0.5% (1%) for $|\eta|<1$ ($|\eta|>1$).

Calibration updated each month in 2011 (every 2-3 months in the endcaps).
π⁰/η→γγ Calibration in the Endcaps

- 2011 calibration sample in the endcaps consists of $3 \times 10^8 \pi^0 \rightarrow \gamma \gamma$ and $3 \times 10^7 \eta \rightarrow \gamma \gamma$ decays. Similar calibration procedure used.
- The calibration precision estimated to be about 2-3%. Lower because of higher background, larger crystal size and increased material in front of ECAL; also dominated by systematics.
Select electron candidates from $W \rightarrow e \nu$ decays with $E_T > 30$ GeV. Further electron ID and isolation cuts: purity of the sample is 99%. ~120 electrons per crystal in the barrel for the entire 2011 dataset.

Calibration is performed using an iterative procedure by fitting $E_{ECAL}/p_{tracker}$ distributions for each crystal. Precision is up to 1% in the central barrel, limited by statistics.
The single-crystal calibration precision in the barrel is dominated by $\pi^0(\eta)$ precision while in the endcaps all three methods give similar precision.

Single-electron calibration became important in 2011 due to increased integrated luminosity and is still statistically limited (good news for 2012).
Overall calibration precision is about 0.5% for $|\eta|<1$ and 0.9% for $1<|\eta|<1.4$ in the barrel. In the endcaps, the precision is 2-3%.

This level of precision has been maintained starting from the second half of 2010 throughout the whole 2011.
The energy resolution for electrons was estimated using $Z \rightarrow ee$ decays and compared with simulations where the estimated calibration precision was taken into account.

The single-crystal calibration precision (σ_{calib}) is not the driving factor for the observed energy resolution: contribution to the constant term is about $0.75 \times \sigma_{\text{calib}}$ due to the shower spread over several crystals.
A single-crystal calibration precision of 0.5% (0.9%) in the central (outer) barrel has been achieved and maintained from mid-2010 to end of 2011, reaching the design goal of 0.5%. In the endcaps, the calibration precision is 2-3%.

In 2012, further improvements are expected not only from the increase in the calibration statistics but also from a further refinement of the calibration methods.
The Outlook? (Progress in understanding ECAL)

- **July 2011 (EPS):**
 - FWHM = 4.23 GeV/c²

- **March 2012 (Moriond):**
 - FWHM = 3.29 GeV/c²

- **July 2012 (ICHEP):**
 - FWHM = nan

- Improved single crystal and cluster corrections

- In progress…

T. Tabarelli de Fatis - CALOR 2012