

NOvA FCRSG 2022

NOvA @ Neutrino 2022

Presented this morning

https://neutrino2022.org/program/detail program?day=3

Experiment Organization Chart for Offline Computing

Computing Coordinator serves as CS Liaison (GD)

Production group consists of several "shifters" that handle submissions weekly GENIE/GEANT/CRY development coordinated by Detector Systematics group

NOvA

ML development coordinated within Reco & DL sub-group

Important Dates to Remember

end of '23 Q1 goal dependent on prestaging speed

Next major production campaign ("prod6") result of reco R&D; late '23 or early '24 (no good estimates) NOvA

CPU - Experiment Usage Over the Last Year

Security changes severely hampered offsite submission ability; ~ 1 year to recover.

NERSC: ~ 90 Million hours; not shown on FIFEmon

@ALCF used ~ 160 GPU node hours (tried using OSG, not very successful: availability/quality too low) NOvA

Memory Footprint Over the Last Year

Analysis-dominated. For analyzers, not fruitful to optimize

CPU and Memory Efficiency Over the Last Year

CPU efficiency is good. Production scripting and support for users is strong

Analysis-dominated. For analyzers, not fruitful to optimize

NOvA

CPU - Prediction Going Forward and Accuracy of Your Predictions [units of Million (1 CPU, 2GB) wall hours per CY]

	2018	2019	2020	2021	2022	2023
Requested	23.17	31.60	29	33	35	37
Actual Used	28.80	25.94	40.5	41.4	12.5 through April	N/A
Efficiency	58%	77%	67%	74%	80% through April	N/A

CPU Adaptations Going Forward

Freight train scheme in place for filtering raw data; access once and never again.

Unique data transfer challenge between FNAL and ALCF

HEPCloud jobs at NERSC interest for HPC GPUs notably with Perlmutter coming online and successes already shown, including at ALCF.

But SCD support needed

With large-scale GPU availability, opens up additional avenues for R&D reconstruction work planned.

Disk: dCache Usage and Predictions (in TB)

PIB			min	max ~	avg	current			
		 Fermilab Public dCache:StorageGroup:nova_readWritePools 	22 118	986 TIB	600 TB	551 TIB			
nn		 Fermilab Public dCache:StorageGroup:nova_NovaAnalysisPools 	249 118	399 LIB	335 118	388 118			
P10		 Fermilab Public dCache:StorageGroup:nova_PublicScratchPools 	11 TiB	136 TiB	39 TiB	31 TiB			
A Later .		 Fermilab Public dCache:StorageGroup:nova_SlowNovaAnalysisPools 	20 TiB	49 TiB	33 TiB				Other
		 Fermilab Public dCache:StorageGroup:nova_NovaPrestagePools 	5 TiB	45 TiB	26 TiB	45 TiB		Analysis	
PB		 Fermilab Public dCache:StorageGroup:nova_NovaWritePools 	38 TiB	38 TiB	38 TiB	38 TiB			Dedicated
		 Fermilab Public dCache:StorageGroup:nova_CdfWritePools 	77 MiB	20 TiB				(Persistent)	
		 Fermilab Public dCache:StorageGroup:nova_Geant4ReadWritePools 				5 TIB		(* *********,	(Write)
PIB		 Fermilab Public dCache:StorageGroup:nova_SlowReadWritePools 				5 TiB			· · · /
	A	 Fermilab Public dCache:StorageGroup:nova_HsmWritePools 				4 TiB			
		 Fermilab Public dCache:StorageGroup:nova_HsmReadPools 				2 TiB			
		 Femilab Public dCache:Storagedrouprova_SlowPublicStoratchPublic 	65 GiB	337 GiB	70 GiB	337 GIB	Current	396 TB (actual)	1191 TB (actual)
							2022	+100 TB	

Total r/w (tape backed): ? TB Total scratch: 136 TB Total persistent: 396 TB Total other: ? TB

NOvA

We regularly must monitor persistent as we often approach the 396 TB allocation

An additional 100 TB would cover our next production run.

Using persistent to ensure analysis ntuples are always cached.

We carefully manage allocation with pinning prestaging datasets as needed, and then unpinning Adding small amounts each year doesn't make much difference. We currently are able to manage our current allocation with careful monitoring.

Additional space would alleviate some mgmt.

Cosmic filtering started at ALCF. Processing entire cosmic dataset in finite time, w/o huge waste of tape.

SCD supporting efficient pre-staging and transfer to ANL.

This will reduce tape usage in the future, but hard to predict at present.

	Total Added By End of Year
At end 2021	+3 PB (actual)
2022	+5 PB
2023	+4 PB
2024	+3 PB

Tape - Usage and Predictions (in PB)

NOvA

Disk: NAS Usage and Predictions (in TB Units)

NOvA

Emergency-driven audits (human resource are thin) Desire for tools for archiving 12

Age of files in NAS

Data Lifetimes

We have never created a data set with a designated lifetime.

- We do not have plans to delete datasets; requires considerable care and effort to ensure that crucial, irreproducible data is not lost.
- There are datasets that we would not copy forward to new media (several Pb).
- We have explored what we could leave behind / delete.
- There is roughly 1.8 Pb of data from design and prototyping stages of experiment
- Ultimately, without provided tools, deleting datasets is not practical

What Do You Want to Achieve in Computing Over Next Three Years

NOvA-SCD Workshop held in October 2021: <u>https://indico.fnal.gov/event/51238/</u>

Transition from UPS to Spack

Scisoft packaging support, SRT build system support

SAM longevity

- MetaCat/Rucio transition not projected to have sufficient effort available for a safe transition
- Not all same functionality currently exists

Authentication

• Transition from certificates to tokens; support for FTS configurations needed

Linux Distros

• SL7 currently used for all of its online/offline systems. EOL May 24

Anything else?