

MicroBooNE FCRSG 2022

MicroBooNE Organization Chart for Offline Computing

Overview of MicroBooNE Computing in 2022

- MicroBooNE took data for five years from 2015-2020 (known as runs 1-5).
 - MicroBooNE took detector R&D data in 2021.
 - MicroBooNE data taking is complete.
- MicroBooNE is the first large LArTPC experiment to do a complete physics analysis using automated reconstruction.
 - MicroBooNE has produced 49 publications (published and submitted) so far, with more on the way.
- MicroBooNE has been running data processing campaigns (data and MC) using software versions known as MCC9 since Dec., 2018.
 - In 2021, MicroBooNE released its first results on the MiniBooNE BNB Low Energy Excess (LEE), based on runs 1-3.

Important Dates to Remember (slide from FCRSG 2021)

Important Dates to Remember

CPU - Experiment Usage Over the Last Year

Memory Footprint Over the Last Year

CPU and Memory Efficiency Over the Last Year

CPU - Prediction Going Forward and Accuracy of Your Predictions [units of Million (1 CPU, 2GB) wall hours per CY]

	2018	2019	2020	2021	2022	2023	2024
Requested	7	20	54	43	<mark>30</mark>	<mark>30</mark>	<mark>15</mark>
Actual Used	11.5	29.3	40.6	32.5	15.1 thru 5/10	N/A	N/A
Efficiency	53.9%	63.8%	56.7%	63.9%	63.8% YTD	N/A	N/A

CPU Adaptations Going Forward

How can experiment use OSG/HPC/HEPCloud going forward

- MicroBooNE uses opportunistic OSG slots for all workflows.
 - Opportunistic OSG accounts for about 20% of batch computing resources.
- MicroBooNE has special priority on Bern OSG site.
 - 1000 4 GB slots / 600 TB local storage element.
 - Used for run 5 data reconstruction in 2020 & 2021.
 - Will be used for run 4/5 BNB stage 2 reconstruction (about to start).
- MicroBooNE has an allocation of 12.8M hours at ANL/Theta HPC facility.
 - R&D on Theta workflows in NUMI group.
 - Workflow has been demonstrated with limited number of jobs. Challenge is to scale. I/O limited.

Disk: dCache Usage and Predictions (in TB)

				Disk Space Used by Pool Group							
1.8 PiB					min	max ~	avg	current			
	1.3 РІВ			 Fermilab Public dCache:StorageGroup:uboone_readWritePools 	16 TiB	1.176 PiB	894 TiB	790 TiB			
				 Fermilab Public dCache:StorageGroup:uboone_PublicScratchPools 	83 TiB	489 TiB	301 TiB	179 TiB			A
				 Fermilab Public dCache:StorageGroup:sbn_SbnDataPools 	Public dCache:StorageGroup:sbn_SbnDataPools 941 KiB 336 TiB 208 TiB		336 TiB			(Pe	
1.3 PiB			 Fermilab Public dCache:StorageGroup:uboone_UbooneAnalysisPools 	104 TiB	137 TiB	127 TiB	137 TiB			,,,,	
1			 Fermilab Public dCache:StorageGroup:uboone_UbooneReadWritePools 	31 TiB	91 TiB	66 TiB	91 TiB				
		Mary 1		 Fermilab Public dCache:StorageGroup:uboone_UbooneSkimPools 	431 GiB	49 TiB	16 TiB				<u> </u>
				 Fermilab Public dCache:StorageGroup:uboone_CdfWritePools 	17 GiB	20 TiB	2 TiB	17 GiB			
909 TiB		- 4	 Fermilab Public dCache:StorageGroup:uboone_Geant4ReadWritePools 	2 TiB	12 TiB	8 TiB	8 TiB				
			4	 Fermilab Public dCache:StorageGroup:uboone_SlowReadWritePools 	2 TiB	12 TiB	8 TiB	8 TiB	Curre	ent	
				 Fermilab Public dCache:StorageGroup:sbn_SbnAnalysisPools 	1 TiB	2 TiB	2 TiB	2 TiB			
455 Tip				 Fermilab Public dCache:StorageGroup:uboone_SlowPublicScratchPools 	544 GiB	901 GiB	552 GiB	544 GiB			
455 115	-	 Fermilab Public dCache:StorageGroup:sbn_PublicScratchPools 	12 KiB	7 GiB	2 GiB	12 KiB					
				 Fermilab Public dCache:StorageGroup:sbn_readWritePools 	167 KiB	487 KiB	423 KiB				
				 Fermilab Public dCache:StorageGroup:sbn_Geant4ReadWritePools 	7 KiB	7 KiB	7 KiB				
0 B	04/01 07/01	10/01	01/01	- Fermilab Public dCache:StorageGroup:sbn_SlowReadWritePools	7 KiB	7 KiB	7 KiB		202	2	

MicroBooNE dedicated dCache pools

- UbooneAnalylsisPools (persistent) 151 TB
- UbooneReadWritePools (write) 100 TB (can be returned)
- UbooneSkimPools was returned in 1/2021
- Dedicated data pool 1.5 PB requested at Mar. 3, 2022 SPPM (see following slide).

	Analysis (Persistent)	Other Dedicated (Write)
Current	151 TB (actual)	100 TB (actual)
2022	151 TB	0
2023	151 TB	0
2024	151 TB	0

Dedicated Data Pool Request

- MicroBooNE requested a dedicated persistent data pool of 1.5 PB.
 - Orginally requested in an SPPM on Mar. 3, 2022.
- Anticipated uses are as follows.
 - Only to be used for production (not accessible to analyzers).
 - Prestage all run 1-5 beam-off data (914 TB = 524 TB runs 1-3 + 390 TB runs 4-5).
 - These data are read repeatedly for generating overlay MC.
 - Prestage NUMI run 4-5 raw data (502 TB).
 - These data can be deleted once they have been reconstructed.
 - Temporary storage for newly generated data and MC.
 - Retain data that will be used for further processing.
 - Branching workflows (detector systematics).
 - Front end for FTS (prevent FTS backlogs).

Production Plans for 2022

- In 2021, 59% of newly produced data was overlay MC (as opposed to real data).
- In 2022 so far, the figure is 87% of newly produced data is overlay MC.
- We expect this pattern to continue in the future. Most new data storage will be overlay MC.
 - The main bottleneck for these kinds of production is reading beam-off raw data from tape.
- The remaining real data production campaigns are as follows.
 - Runs 4/5 stage 2 reconstruction of BNB data.
 - Input data for this campaign is already staged to Bern.
 - Runs 4/5 stage 1+2 reconstruction of NUMI data.
 - Starting now.

Dedicated Data Pool Possible Scope Reductions

- If the full 1.5 PB can not be granted, the first use of the data pool that we would eliminate is prestaging NUMI raw data ahead of reconstruction.
 - This would save about 500 TB, reducing the needed size to 1.0 PB.
- If 1.0 PB is still too large, we would prioritize prestaging runs 4-5 beam-off data ahead of runs 1-3 beam-off data.
 - We estimate that about 70% of future overlay MC production will be for runs 4-5.
 - With 500 PB we could keep all of runs 4-5 beam off data.
- Summary
 - We think we can manage our remaining beam-on data production with existing resources (including Bern).
 - Having beam-off data (especially runs 4-5) on disk will speed up our remaining overlay MC production and take pressure off the tape system.

Tape - Usage and Predictions (in PB)

Disk: NAS Usage and Predictions (in TB Units)

Age of files in NAS

Data Lifetimes

Please describe your plans, if any, to delete any datasets

- We have never specified a data lifetime at creation.
- We have had several data deletion campaigns in the past.
 - We have already deleted all MCC7 and earlier reconstructed data and MC.
 - We are internally discussing a deleteion plan for MCC8.
 - Deleting all MCC8 MC and reconstructed data would save about 7 PB (out of about 30 PB).
 - We could also consider not migrating MCC8 data.

What Do You Want to Achieve in Computing Over Next Three Years

- Finish reconstructing runs 1-5 using MCC9 software.
 - Stage 2 reconstruction of BNB data for runs 4-5.
 - Stage 1+2 reconstruction of NUMI data for runs 4-5.
- Physics analysis and results.
 - Complete flagship BNB LEE analysis for full dataset (runs 1-5).
 - Full oscillation analyses + many other physics analyses.
- Analyze and publish detector R&D data taken in 2021.
- Develop reconstruction and simulation beyond MCC9 (MCC10).
- Possible targeted reprocessing using a future MCC10.
- Use experience gained by running MicroBooNE to contribute to the SBN program.