

Status of the SpinQuest experiment and proposal of the DarkQuest upgrade

Nhan Tran on behalf of the SpinQuest and DarkQuest communities June 2022 FNAL PAC meeting June 23, 2022

Outline

SpinQuest and the DarkQuest upgrade

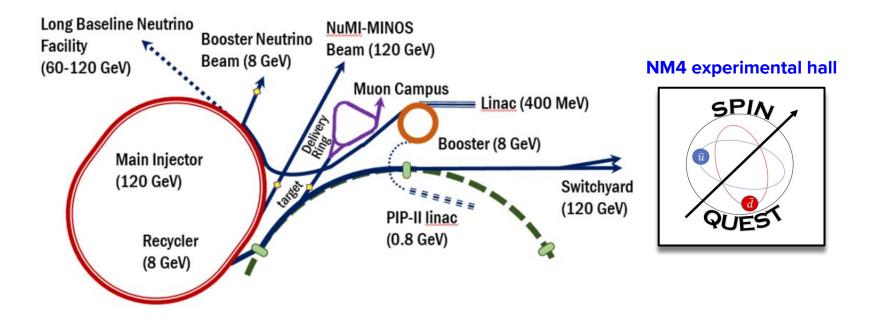
Dark sector searches at SpinQuest and DarkQuest

- + Snowmass framing
- + Recent progress

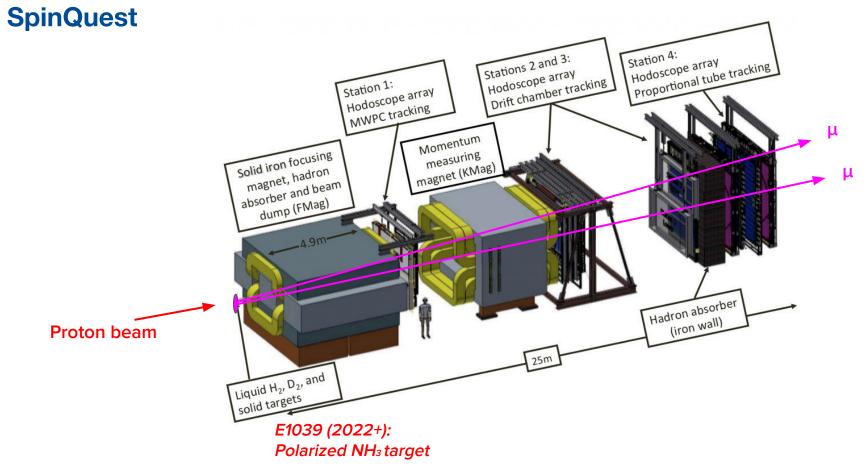
SpinQuest status and future nuclear/spin physics program

Collaboration and Outlook

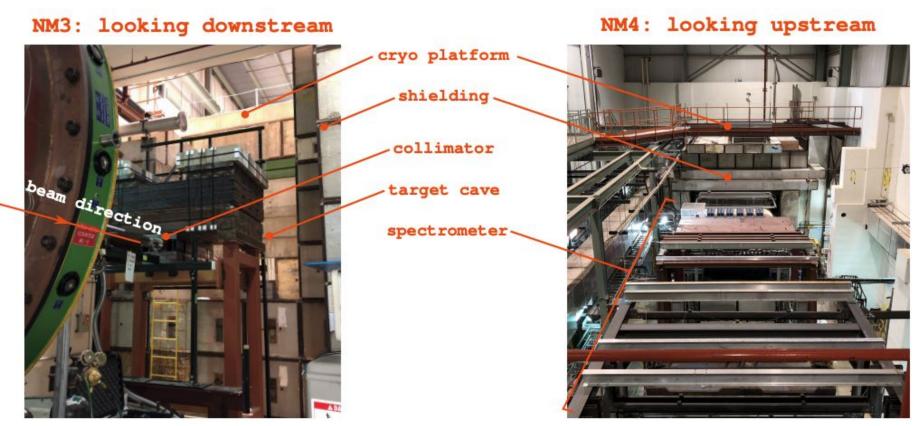
<u>Charge</u>: We ask the PAC to review the status of the SpinQuest experiment and the proposal for its upgrade, referred to as DarkQuest.



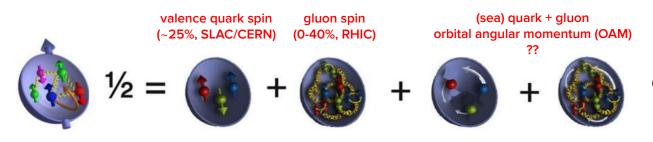
SpinQuest and the DarkQuest upgrade


SeaQuest (e906) - dimuon spectrometer SpinQuest (e1039) - dimuon spectrometer + polarized target DarkQuest - EMCal/tracking/target upgrade to dimuon spectrometer

SpinQuest and DarkQuest



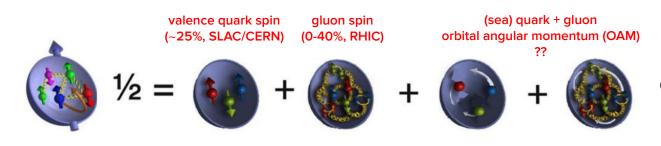
SpinQuest



SpinQuest collaboration

About Spinc	luest/E1039 Collab	https://spinquest.fnal.gov
INSTITUTION 20	ULL MEMBERS 53 Postdoes 7 Grad. Students 15	AFFILIATE MEMBERS
		Haley Stien, John Marsden, Mitchell Schneller, Nathan Rowlands,
1) Abilene Christian University	Donald Isenhower (PI), Michael Daugherity, Shon Watson	Roy Salinas, Rusty Towell, Shannon McNease, Yves Ngenzi, Thomas Fitch
2) Argonne National Laboratory	Paul Reimer (PI), Donald Geesaman	Kevin Bailey, Thomas O'Connor
3) Aligarh Muslim University	Huma Haider (PI)	
4) Boston University	David Sperka (PI), Zijie Wan	
5) Fermi National Accelerator Laboratory	Richard Tesarek (PI), Carol Johnstone	
6) KEK	Shin'ya Sawada (PI)	Shigeru Ishimoto
7) Los Alamos National Laboratory	Kun Liu (SP), Ming Liu, Astrid Morreale, Mikhail Yurov, Kei Nagai, Zongwei Zhang	Jan Boissevain, Melynda Brooks, Matt Durham, David Kleinjan, Sho Uemura, Cesar Da Silva, Patrick McGaughey, Andi Klein
8) Mississippi State University	Lamiaa El Fassi (PI), Catherine Ayuso, Nuwan Chaminda	Dipangkar Dutta
9) New Mexico State University	Stephen Pate (PI), Vassili Papavassiliou, <mark>Abinash Pun</mark> , Forhad Hossain, Dinupa Nowarathne	
10) RIKEN	Yuji Goto (PI)	
11) Shandong University	Qinghua Xu (PI), Zhaohuizi Ji	
12) Tokyo Institute of Technology	Toshi-Aki Shibata (PI)	
13) University of Colombo	Darshana Perera (PI), Harsha Sirilal, Vibodha Bandara	
14) University of Illinois, Urbana-Champaign	Jen-Chieh Peng (PI), Ching Him Leung	Naomi Makins, Daniel Jumper, Jason Dove, Mingyan Tian, Bryan Dannowitz, Randall McClellan, Shivangi Prasad
15) University of Michigan	Wolfgang Lorenzon (PI), Levgen Lavrukhin, Noah Wuerfel	Daniel Morton, Richard Raymond, Marshall Scott
16) University of New Hampshire	Karl Slifer (PI), David Ruth	Maurik Holtrop
17) Tsinghua University	Zhihong Ye (PI)	
	Dustin Keller (SP), Kenichi Nakano, Ishara Fernando,	Donal Day, Donald Crabb, Jixie Zhang, Oscar Rondon, Arthur
18) University of Virginia	Zulkaida Akbar, Waqar Ahmed, Liliet Diaz, Anchit Arora,	Conover, Brandon Kriesten, Simonetta Liuti, Ellen Brown, Blaine
	Arthur Conover, Jay Roberts	Norum, Matthew Roberts
19) Yamagata University	Yoshiyuki Miyachi (PI), Norihito Doshita	Takahiro Iwata, Norihiro Doshita
20) Yerevan Physics Institute	Hrachya Marukyan (PI)	

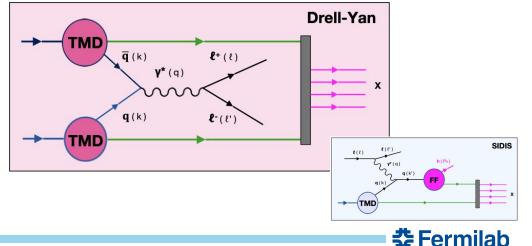
SpinQuest - proton spin puzzle


Puzzle: EMC experiment (1987) measured only ~25% of proton spin comes from valence quarks (unexpected!)

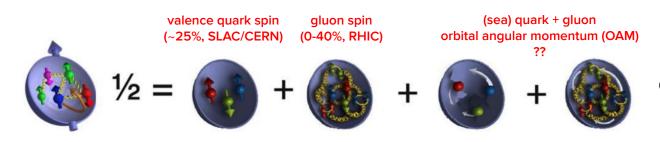
Other potential contributions: Orbital angular momentum (OAM) of the quarks and gluons

[Lattice QCD predicts non-zero quark OAM]

SpinQuest - proton spin puzzle


Puzzle: EMC experiment (1987) measured only ~25% of proton spin comes from valence quarks (unexpected!)

Other potential contributions: Orbital angular momentum (OAM) of the quarks and gluons


[Lattice QCD predicts non-zero quark OAM]

Drell-Yan is a critical complement to **SIDIS** (semi-inclusive deep inelastic scattering) for measuring the proton spin and testing QCD, *both are required*

Cleanest method with no fragmentation function, two parton TMDs, direct access to sea-quark distributions

SpinQuest - proton spin puzzle

Puzzle: EMC experiment (1987) measured only ~25% of proton spin comes from valence quarks (unexpected!)

Other potential contributions: Orbital angular momentum (OAM) of the quarks and gluons

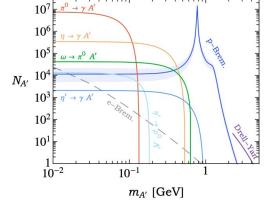
[Lattice QCD predicts non-zero quark OAM]

Measuring non-zero Sivers asymmetry at SpinQuest requires sea-quark OAM observation would be a major discovery!

$$A_N(p_{\text{beam}} + p_{\text{trg}}^{\uparrow} \to \text{DY}) \propto \frac{N_L^{DY} - N_R^{DY}}{N_L^{DY} + N_R^{DY}} \propto \frac{f_{1T}^{\perp,\bar{u}}(x_t)}{f_1^{\bar{u}}(x_t)}$$

SpinQuest and DarkQuest upgrade

Dark sector signature SpinQuest: muon final states DarkQuest: e,γ,π,...

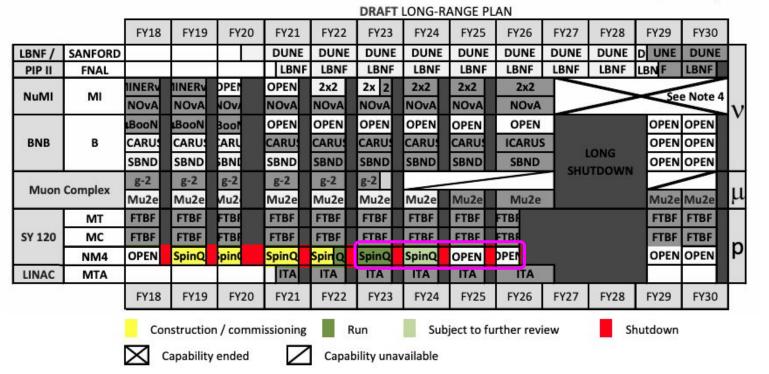

System upgrades Existing EMCal from PHENIX Tracking MWPC available Tensor polarized deuteron target

Unique features of SpinQuest/DarkQuest for dark sectors

- Large putative dark sector production cross section with **120 GeV proton beam**
- 5m beam dump geometry sensitive to unique lifetime baseline
- Spectrometer with KMAG provides good
 momentum measurement for forward decays
- EMCal opens up new final states distinct from large muon backgrounds

Existing experiment and infrastructure means we require modest investment - short time to high impact physics!

 $E_{\text{beam}} = 120 \text{ GeV}, 1.44 \times 10^{18} \text{ POT}, \epsilon = 10^{-6}$


	$E_{ m beam}$	p_{\min}	POT	$z_{ m min}$	z_{\max}	$z_{ m min}/E_{ m beam}$
SeaQuest	$120~{\rm GeV}$	$10 \ { m GeV}$	$10^{18} - 10^{20}$	$5 \mathrm{m}$	10 m	4 cm / GeV
NA62	$400~{\rm GeV}$	-	10^{18}	100 m	$250 \mathrm{m}$	$25~\mathrm{cm} \ / \ \mathrm{GeV}$
SHiP	$400~{\rm GeV}$	$100 {\rm GeV}$	10^{20}	$65 \mathrm{m}$	$125 \mathrm{~m}$	16 cm / GeV
FASER	$6500 {\rm GeV}$	1 TeV	$10^{16} - 10^{17}$	390 m	400 m	6 cm / GeV

Berlin, Gori, Schuster, Toro https://arxiv.org/abs/1804.00661

Timelines

Office of the CRO January 2022

Near-term window of opportunity, including FY25-26

High level vision – SpinQuest and DarkQuest

A vibrant and powerful spin and dark sector program running together

SpinQuest Phase

- proton spin puzzle measure Sivers asymmetry
- dark sectors in muon final states

DarkQuest Phase

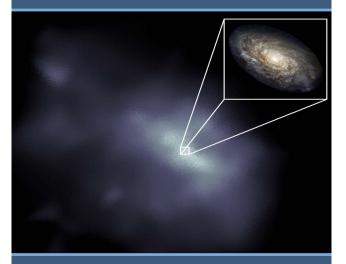
- EMCal upgrade (no degradation of spin physics), enhanced tracking and targetry
- expanded spin physics program measuring transversity
- expanded dark sector program in e, γ, π final states

High impact HEP dark sectors and NP/spin physics; strong complementarity with Fermilab capabilities and timelines for modest resources

Dark sector searches at SpinQuest and DarkQuest

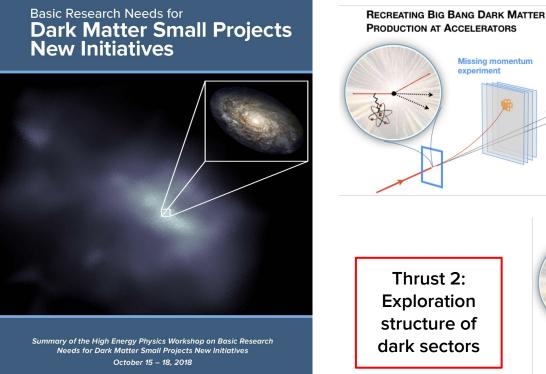
Snowmass framing (also, see PAC talk from Alexey Petrov on Rare and Precision Frontier) **Recent progress from the SpinQuest dark sector community**

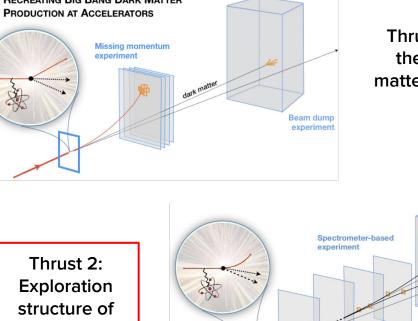
Physics drivers


- Dark matter exists
 - Thermal freeze-out DM narrows the mass range to ~MeV-TeV
 - Provides clear milestones
 - No discovery in WIMP searches thus far
- **Dark sectors** can solve many experimental/theoretical puzzles
 - Dark sectors mean SM-neutral forces (typically < ~GeV)
 - Can include dark matter
 - Visible (SM) final states important to explore for discovery

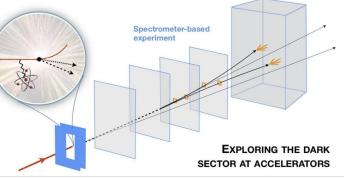
Setting the stage: dark sectors at accelerators

Dark Matter New Initiatives report


Basic Research Needs for Dark Matter Small Projects New Initiatives



Summary of the High Energy Physics Workshop on Basic Research Needs for Dark Matter Small Projects New Initiatives October 15 – 18, 2018



Setting the stage: dark sectors at accelerators

Thrust 1: target thermal dark matter milestones

RF6 report (to appear)

Snowmass RF6 Big Ideas

Strong connection with NF03, EF10, AF5, CF6

Dark matter production at intensity frontier experiments

Benchmarks: dark photon, scalar, neutrino portal, millicharged Exploring dark sector portals with high intensity experiments

Benchmarks: dark photon, scalar, neutrino portal, axion-like particle (ALPs) New flavors and rich structures in dark sectors

Benchmarks: g-2, SIMPs, inelastic DM, non-minimal ALPs

RF6 report (to appear)

Snowmass RF6 Big Ideas

Strong connection with NF03, EF10, AF5, CF6

Dark matter production at intensity frontier experiments

Benchmarks: dark photon, scalar, neutrino portal, millicharged Exploring dark sector portals with high intensity experiments

Benchmarks: *dark photon,* scalar, neutrino portal, axion-like particle (ALPs) New flavors and rich structures in dark sectors

Benchmarks: g-2, SIMPs, inelastic DM, non-minimal ALPs

SpinQuest/DarkQuest plays a key role

Snowmass RF6 Big Ideas

Strong connection with NF03, EF10, AF5, CF6

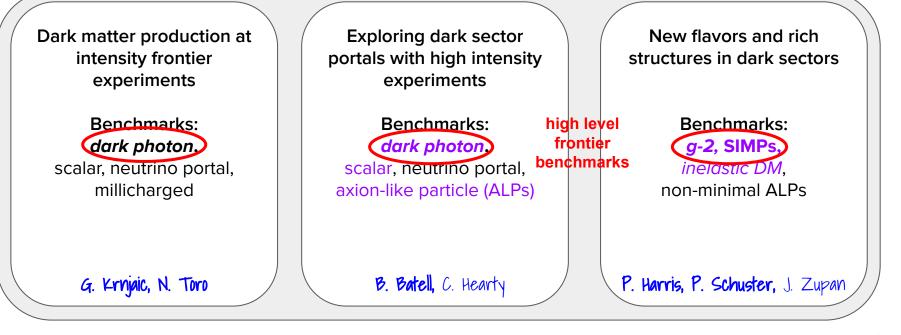
RF6 report (to appear)

S. Gori, M. Williams

Dark matter production at intensity frontier experiments	Exploring dark sector portals with high intensity experiments	New flavors and rich structures in dark sectors
Benchmarks: <i>dark photon</i> , scalar, neutrino portal, millicharged	Benchmarks: <i>dark photon</i> , scalar, neutrino portal, axion-like particle (ALPs)	Benchmarks: g-2, SIMPs, inelastic DM, non-minimal ALPs
G. Krnjaic, N. Toro	B. Batell, C. Hearty	P. Harris, P. Schuster, J. Zupan

SpinQuest/DarkQuest plays a key role

+ Experiments + Facilities (P. liten, N. Tran)

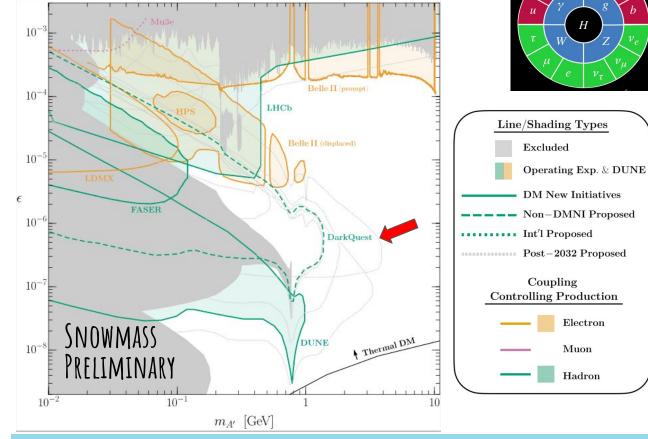


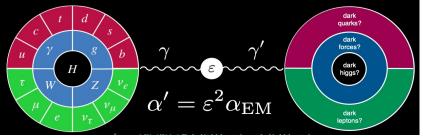
Snowmass RF6 Big Ideas

Strong connection with NF03, EF10, AF5, CF6

RF6 report (to appear)

S. Gori, M. Williams




SpinQuest/DarkQuest plays a key role

+ Experiments + Facilities (P. Ilten, N. Tran)

Dark photon benchmark scenario

muon g-2 benchmark scenario

A No-Lose Theorem for Discovering the New Physics of $(g-2)_{\mu}$ at Muon Colliders

Rodolfo Capdevilla, a,b David Curtin, a Yonatan Kahn, c,d Gordan Krnjaic e,f

(Paraphrasing 2101.10334...)

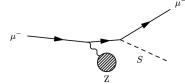
Step 1. Confirm g-2 anomaly

Step 2. Look for low-scale phenomenon < ~GeV at existing and new facilities

Step 3-5. Build successively higher energy muon colliders

muon g-2 benchmark scenario

A No-Lose Theorem for Discovering the New Physics of $(g-2)_{\mu}$ at Muon Colliders


Rodolfo Capdevilla, a,b David Curtin, Yonatan Kahn, c,d Gordan Krnjaice, f

(Paraphrasing 2101.10334...)

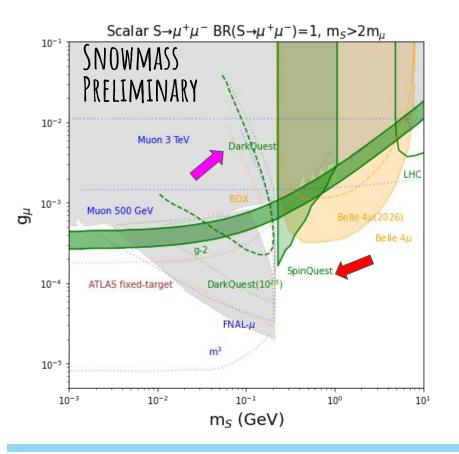
Step 1. Confirm q-2 anomaly

Step 2. Look for low-scale phenomenon < ~GeV at existing and new facilities

Step 3-5. Build successively higher energy muon colliders

3. Batell						Z	
	Invisible			Visible			
final state/ mediator	Long- lived	neutrinos $\nu \nu$	DM <i>XX</i>	photons $\gamma\gamma$	electrons e^+e^-	muons $\mu^+\mu^-$	hadrons $\pi\pi,\ldots$
	no(?)	yes	yes	no	no(?)	$yes^* (m_V > 2m_\mu)$	no(?)
vector	 L_µ - L_τ gauge boson: UV complete, automatic coupling to neutrinos, easy to couple to DM. (* m_V > 2m_µ constrained by dedicated BABAR search) Challenging to build viable models with sizable couplings of vector mediator to electrons or hadrons (gauge anomalies, constraints from neutrino physics) 						
	$yes (m_S < 2m_\mu)$	yes	yes	yes $(m_S < 2m_\mu)$	$yes (m_S < 2m_\mu)$	yes $(m_S > 2m_\mu)$	$yes (m_S > 2m_{\pi})$
scalar	 All minimal signatures can be realized in scalar simplified models. UV complete models require new SM-charged states above weak scale with special flavor structure (such states can in principle affect (g-2) 						

missing momentum

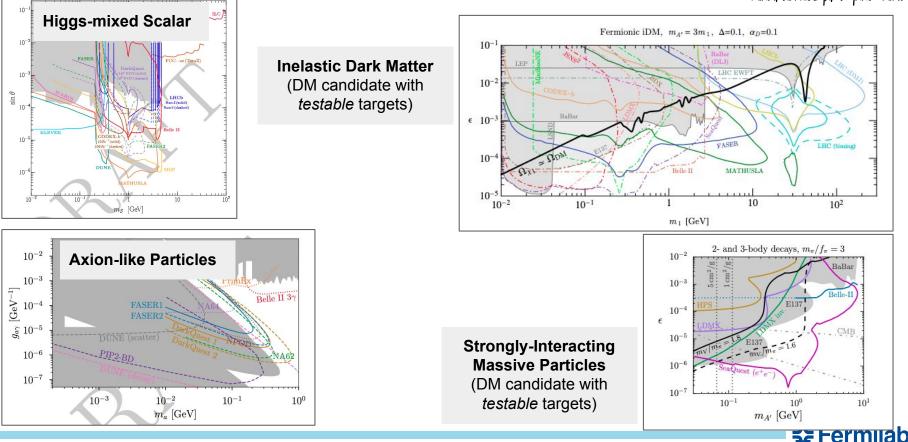

signature

• More phenomenological studies needed to chart the parameter space

prompt or displaced resonance

muon g-2 benchmark scenario

SpinQuest/DarkQuest plays a key role in new physics models for g-2 < ~GeV

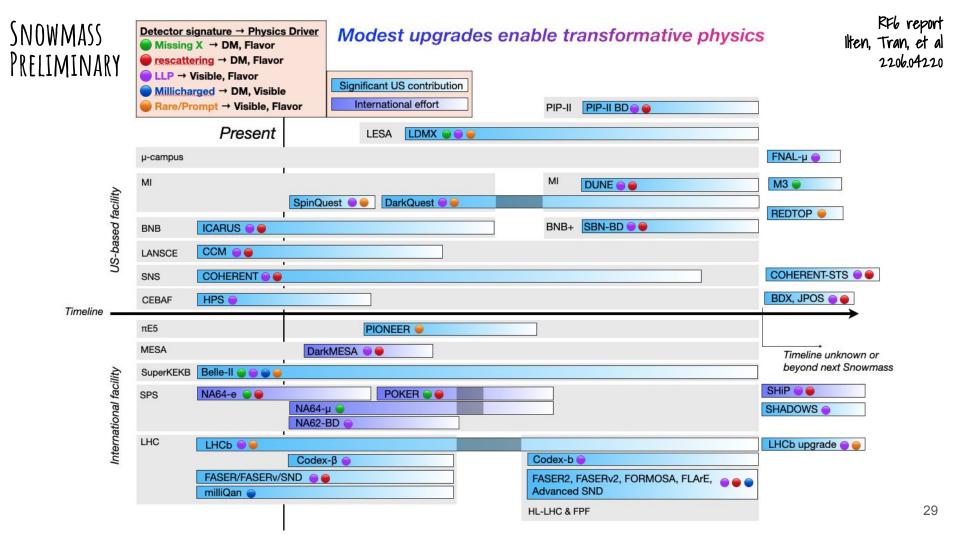

SpinQuest limits from FY23 data! e.g. Belle II limits on full 30ab⁻¹ (> 2030)

DarkQuest limits in ee, $\gamma\gamma$ channel below $2m_{\mu}$

Sensitivity to other Snowmass benchmark scenarios

RF6 reports (to appear) Berlin, Gori, Schuster, Toro: 1804.00661 Batell, Evans, Gori, Rai: 2008.08108 Blinov, kowalczyk, Wynne: 2112.09814

Dark sectors at SpinQuest and DarkQuest


SpinQuest (now!)

- Cover open g-2 phase space, prompt S/V $\rightarrow \mu\mu$
- Initial long-lived dark photon ($\mu\mu$) searches, commission displaced tracking

DarkQuest (soon!)

- Large increase in sensitivity to dark photon phase space
- Cover open g-2 phase space, displaced S/V \rightarrow ee, $\gamma\gamma$
- Enable searches for inelastic DM, SIMPs, ALPs, etc.

Theory and experimental community come together over past 2 years - building physics case, detailed full simulation, coordinate with NP community

DarkQuest: A dark sector upgrade to SpinQuest at the 120 GeV Fermilab Main Injector

Aram Apyan¹, Brian Batell², Asher Berlin³, Nikita Blinov⁴, Caspian Chaharom⁵, Sergio Cuadra⁶, Zeynep Demiragli⁵, Adam Duran⁷, Yongbin Feng³, I.P. Fernando⁵, Stefania Gori⁹, Philip Harris⁶, Duc Hoang⁶, Dustin Keller⁸, Elizabeth Kowalczyk¹⁰, Monica Leys², Kun Liu¹¹, Ming Liu¹¹, Wolfgang Lorenzon¹², Petar Maksimovic¹³, Cristina Mantilla Suarez³, Hrachya Marukyan¹⁴, Amitav Mitra¹³, Yoshiyuki Miyachi¹⁵, Patrick McCormack⁶, Eric A. Moreno⁶, Yasser Corrales Morales¹¹, Noah Paladino⁶, Mudit Ral², Sebastian Rotella⁶, Luke Saunders⁵, Shinaya Sawada²¹, Carli Smith¹⁷, David Sperka⁵, Rick Tesarek³, Nhan Tran³, Yu-Dai Tsal¹⁸, Zijle Wan⁵, and Margaret Wynne¹²

¹Brandeis University, Waltham, MA 02453, USA ²University of Pittsburgh, Pittsburgh, PA 15260, USA ³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ⁴University of Victoria, Victoria, BC V8P 5C2, Canada 5Boston University, Boston, MA 02215, USA ⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁷San Francisco State University, San Francisco, CA 94132, USA ⁸University of Virginia, Charlottesville, VA 22904, USA ⁹University of California Santa Cruz, Santa Cruz, CA 95064, USA ¹⁰Michigan State University, East Lansing, Michigan 48824, USA 11 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 12 University of Michigan, Ann Arbor, MI 48109, USA ¹³Johns Hopkins University, Baltimore, MD 21218, USA 14 Yamagata University, Yamagata, 990-8560, Japan 15 KEK Tsukuba, Tsukuba, Ibaraki 305-0801 Japan 16 Yerevan Physics Institute, Yerevan, 0036, Republic of Armenia 17Penn State University, State College, PA 16801, USA ¹⁸University of California Irvine, Irvine, CA 92697, USA

ABSTRACT

202

Mar

9

-

ex]

ep.

9

1

>

v:2203.08322

arXiv

Expanding the mass range and techniques by which we search for dark matter is an important part of the workwide particle physics program. Accelerator-based searches for dark matter and dark sector particles are a uniquely compelling part of this program as a way to both create and detect dark matter in the laboratory and explore the dark sector by searching for mediators and excited dark matter particles. This paper focuses on developing the DarkQuest experimential concept and gives an outlook on related enhancements collectively referred to as LongQuest. DarkQuest is a proton fixed-target experiment with leading sensitivity to an array of visible dark sector signatures in the MeV-GeV mass range. Because it builds off or exiting accelerator and detector intrastructure, it fores a powerful but modest-cost experimential influent what can be realized on a short timescale.

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Theory and experimental community come together over past 2 years - building physics case, detailed full simulation, coordinate with NP community

Co	ontents	
1	Introduction	3
2	DarkQuest Science Goals and Physics Signatures	4
2.1	Dark sector searches at accelerators	. 4
2.2	Benchmark dark sector scenarios	. 5
2.3		
2.4	Dark sector search strategy	. 9
3	SpinQuest spectrometer and DarkQuest detector upgrades	12
3.1		
3.2	EMCal upgrade	13
3.3	Additional tracking layers	15
4	Detector simulation and reconstruction	16
4.1	Signal and background generation and simulation	16
4.2	Trigger	17
4.3	Displaced tracking and vertexing	20
4.4	Particle ID and reconstruction	27
4.5	Signal acceptance to dark sector signatures	31
5	LongQuest Conceptual Design	33
5.1	Long-Baseline Detectors for Long-lived and Particles	33
5.2	Improved particle ID and background rejection	33
5.3	New Front-Dump and Fast-Tracking	34
6	Outlook	35

DarkQuest: A dark sector upgrade to SpinQuest at the 120 GeV Fermilab Main Injector

Aram Apyan¹, Brian Batell², Asher Berlin³, Nikita Blinov⁴, Caspian Chaharom⁵, Sergio Cuadra⁶, Zevnep Demiragli⁵, Adam Duran⁷, Yongbin Feng³, I.P. Fernando⁸, Stefania Gori9, Philip Harris6, Duc Hoang6, Dustin Keller8, Elizabeth Kowalczyk10, Monica Levs², Kun Liu¹¹, Ming Liu¹¹, Wolfgang Lorenzon¹², Petar Maksimovic¹³, Cristina Mantilla Suarez³, Hrachya Marukyan¹⁴, Amitav Mitra¹³, Yoshiyuki Miyachi¹⁵, Patrick McCormack⁶, Eric A. Moreno⁶, Yasser Corrales Morales¹¹, Noah Paladino⁶, Mudit Rai², Sebastian Rotella⁶, Luke Saunders⁵, Shinaya Sawada²¹, Carli Smith¹⁷, David Sperka⁵, Rick Tesarek³, Nhan Tran³, Yu-Dai Tsai¹⁸, Zijie Wan⁵, and Margaret Wynne¹²

¹Brandeis University, Waltham, MA 02453, USA ²University of Pittsburgh, Pittsburgh, PA 15260, USA ³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ⁴University of Victoria, Victoria, BC V8P 5C2, Canada 5Boston University, Boston, MA 02215, USA ⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁷San Francisco State University, San Francisco, CA 94132, USA ⁸University of Virginia, Charlottesville, VA 22904, USA ⁹University of California Santa Cruz, Santa Cruz, CA 95064, USA ep. ¹⁰Michigan State University, East Lansing, Michigan 48824, USA ¹¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA 12 University of Michigan, Ann Arbor, MI 48109, USA ¹³Johns Hopkins University, Baltimore, MD 21218, USA 14 Yamagata University, Yamagata, 990-8560, Japan 15KEK Tsukuba, Tsukuba, Ibaraki 305-0801 Japan 16 Yerevan Physics Institute, Yerevan, 0036, Republic of Armenia 17Penn State University, State College, PA 16801, USA ¹⁸University of California Irvine, Irvine, CA 92697, USA

ABSTRACT

202

Mar

9

-

ex]

9

1

>

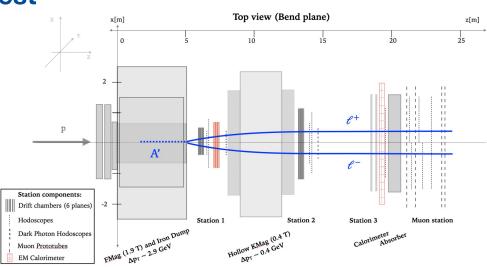
N

0

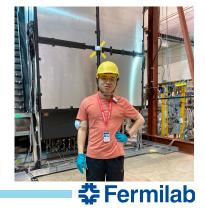
083

v:2203.

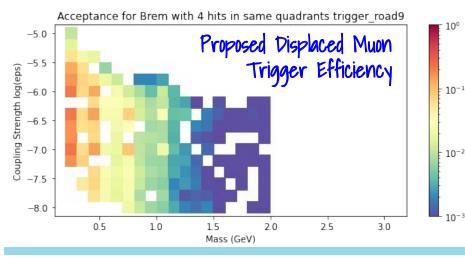
arXiv


Expanding the mass range and techniques by which we search for dark matter is an important part of the worldwide particle physics program. Accelerator-based searches for dark matter and dark sector particles are a uniquely compelling part of this program as a way to both create and detect dark matter in the laboratory and explore the dark sector by searching for mediators and excited dark matter particles. This paper focuses on developing the DarkQuest experimental concept and gives an outlook on related enhancements collectively referred to as LongQuest. DarkQuest is a proton fixed-target experiment with leading sensitivity to an array of visible dark sector signatures in the MeV-GeV mass range. Because it builds off of existing accelerator and detector infrastructure, it offers a powerful but modest-cost experimental initiative that can be realized on a short timescale.

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)


Detailed study from HEP community to understand dark sector performance

- Trigger
- Tracking & Vertexing efficiency
- Calorimeter & Particle ID
- Mass reconstruction

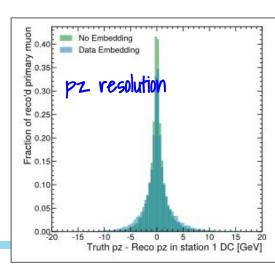

A lot of progress in software and simulation:

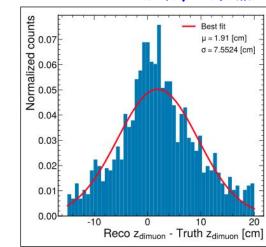
 trigger hodoscope studies; new displaced tracking algorithm with speed-ups (for prompt too) and simulation improvements for upgrade and dark sector event generation

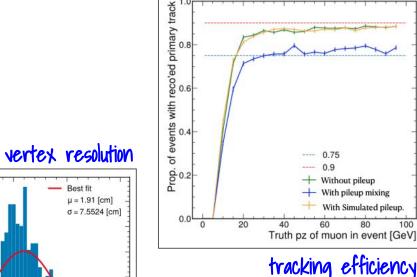


Detailed study from HEP community to understand dark sector performance

- Trigger
- Tracking & Vertexing efficiency
- Calorimeter & Particle ID
- Mass reconstruction

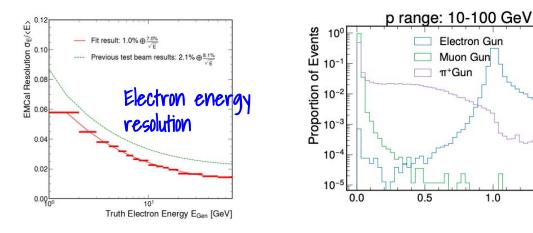


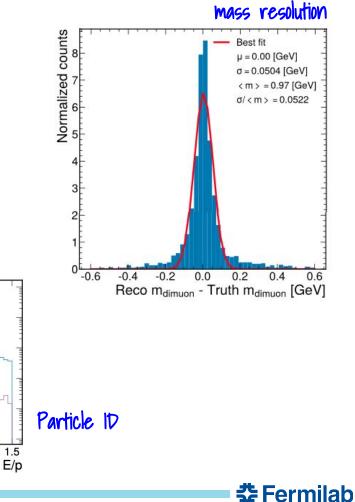

EMCal Energy Trigger



Detailed study from HEP community to understand dark sector performance

- Trigger
- Tracking & Vertexing efficiency
- Calorimeter & Particle ID
- Mass reconstruction

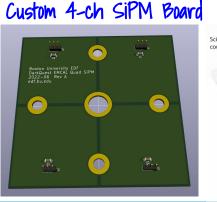




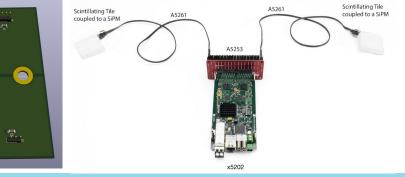
Detailed study from HEP community to understand dark sector performance

- Trigger ٠
- Tracking & Vertexing efficiency ٠
- **Calorimeter & Particle ID**
- Mass reconstruction

Electron Gun Muon Gun


1.0

π⁺Gun

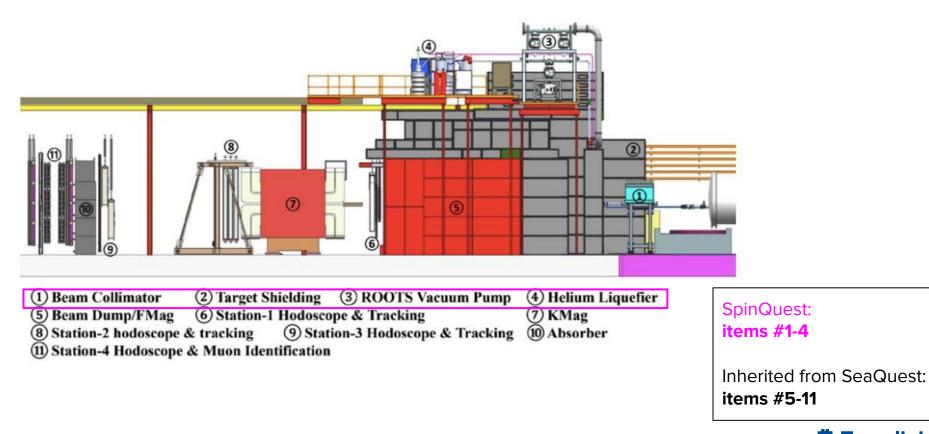

0.5

MIT/BU EMCal test stand has been developed for electronics studies

- Comparing different readout options (fully custom and generic system a la STAR, or dedicated off-the-shelf system from CAEN)
- CAEN FERS-5200 system a strong candidate: minimal design work, competitive price, and short lead time for integration
- Will be available to measure background rates in NM4 later this year

CAEN 64-ch A5202 ASIC Board

EMCal Test Stand at BU



SpinQuest status and future nuclear/spin physics program

SpinQuest: construction and commissioning status

SpinQuest: construction and commissioning status

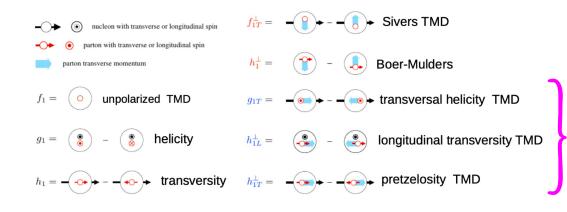
- Construction of all aspects of SpinQuest
 nearly complete
 - New collimator installed
 - All cryo infrastructure piping installed
 - Cryogenic Safety Review now 98% complete (just a couple more weeks)
 - Pandemic and availability of lab resources
 cause of delays in completing these milestones

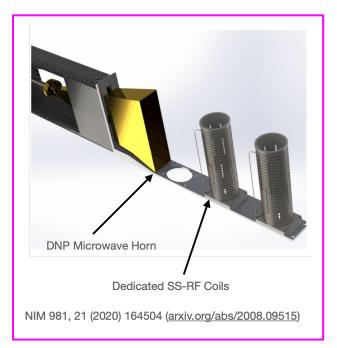
• Target System Status

- Liquefaction plant installed, commissioning going well (*LHe storage dewars now full and ready*).
- Target electronics and infrastructure ready to use
- Software/monitors/subsystems all ready
- Now under Accelerator Readiness Review

SpinQuest: Moving Forward

- SpinQuest next few steps for target system
 - Get Greenlight from Safety to run all parts
 - Test main transfer line (with LHe)
 - Have SC magnet cooldown (in July)
 - Start full cryogenic circulation commissioning
 - Polarize Target Material
- Complete Cave Roof (shielding blocks)
- Complete Accelerator Readiness Review
 - FNAL management has stepped in to ensure that this review takes place quickly and that SpinQuest has no further delays
- Take beam in November
 - Detector is ready for beam commissioning
 - Online monitoring is ready
 - Analysis framework is ready

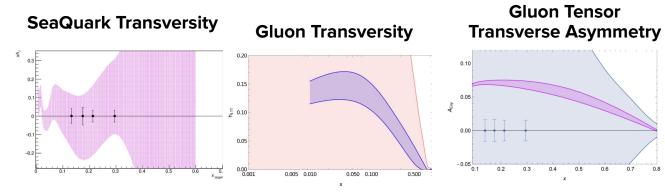




SpinQuest upgrade - future transversity program

Modest upgrade brings expanded nucleon transversity physics program Beyond non-zero Sivers/OAM, see more at <u>Tranversity 2022 conference</u>

Primary focus is Gluon Transversity – this would be the first experiment of its kind on a very hot topic in Spin Physics



SpinQuest upgrade - future transversity program

Modest upgrade brings expanded transversity physics program Beyond non-zero Sivers/OAM, see more at <u>Tranversity 2022 conference</u>

The Transverse Structure of the Deuteron with Drell-Yan

The SpinQuest Collaboration^a

We propose to measure neutron and deuteron transversity TMDs. The quark transversity distributions of the nucleon are decoupled from the deuteron gluon transversity in the Q^2 evolution due to the chiral-odd property in the transversely-polarized target. The gluon transversity TMD only exists for targets of spin greater or equal to 1 and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. This experiment would be the first of its kind and would probe the gluonic structure of the deuteron, investigating exotic glue contributions in the nucleus not associated with individual nucleons. This experiment can be performed with the SpinQuest polarized target recently assembled for experiment E1039 and the spectrometer already in place in NM4. This new experimental setup would require very minimal modification to the target system and no modification to the darget system and no modification densities. Dedicated beam-time with this novel target system is required to achieve our physics goals.

Spin/NP upgrade program arXiv:2205.01249

- Very high proton luminosity from Main Injector
 - Large kinematic coverage overlaps with JLab and future EIC
 - Beam cycle allows target RF manipulations between spills
- No other facility can offer these two combinations allowing access to these sought after observables

Collaboration and Outlook

Community and Collaboration

More collaboration between dark sector and NP members started > 1 year ago BU now a formal member, MIT associate members Build new Dark Sectors working group within SpinQuest

Bringing mutually beneficial technical collaboration – e.g. shared generation of large data samples, improvements to displaced and prompt tracking

Work on-going to understand technical aspects of running concurrently

Modest trigger bandwidth (~100 Hz) for displaced and e/γ final states Dedicated dark sector trigger menu with full bandwidth during target annealing

Community and Collaboration

A lot of interest in the dark sector program!

additional university HEP groups contributing students

Vibrant theory - experiment collaboration, large role in Snowmass Theory students working closely with experimenters

Modest seed efforts have brought concept significantly forward FNAL LDRD for exploring accelerator-based dark sector concepts (spread over 4 ideas) URA visiting scholar award, NSF graduate fellowship University startups to support students and hardware tests

... looking for support from PAC to expand our efforts!

High level vision – SpinQuest and DarkQuest

A vibrant and powerful spin and dark sector program running together

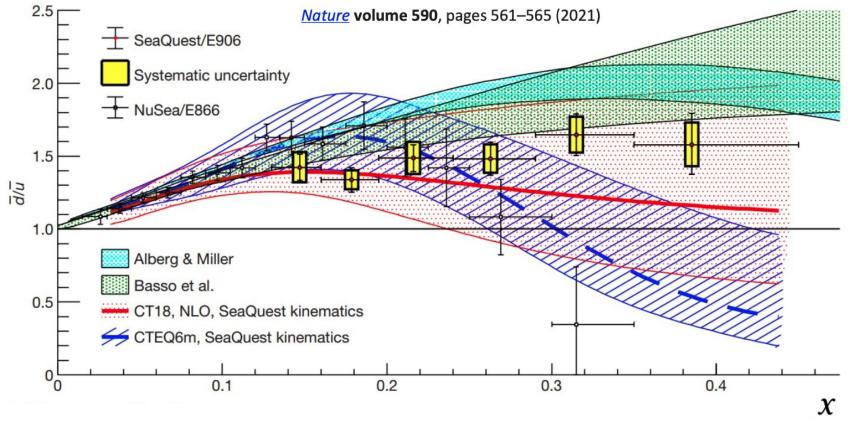
SpinQuest Phase

- proton spin puzzle measure Sivers asymmetry
- dark sectors in muon final states: cover g-2 phase space, displaced dimuon

DarkQuest Phase

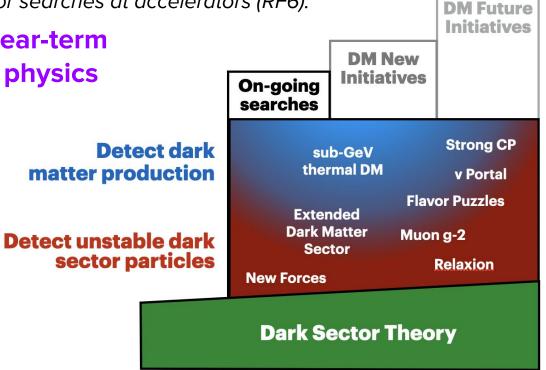
- Modest upgrade, ~order of magnitude less cost than contemporaries EMCal upgrade (no degradation of spin physics), enhanced tracking and targetry
- World leading physics

Unique spin physics transversity program complementing EIC significant increase in dark photon sensitivity, opens signatures for iDM, ALP, SIMPs, etc.


High impact HEP and NP/spin physics; leverage DOE and Fermilab capabilities; short timeline with modest resources

Extra material

SeaQuest


‡ Fermilab

RF6 report (to appear)

Setting the stage: dark sectors at accelerators

Snowmass message from dark sector searches at accelerators (RF6):

Modest upgrades enable near-term transformative dark sector physics

<u>Lanfranchi</u>

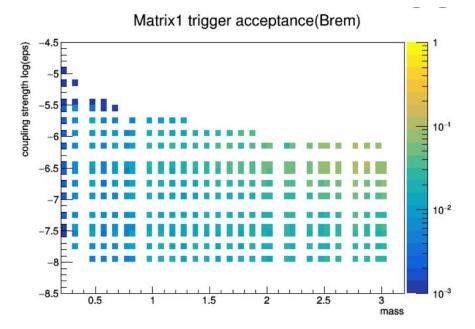
Physics Beyond Colliders

PBC Experiments/projects able to produce results within 10 years

Experiment	Dataset assumed for sensitivities, beams	Tentative Timescale	References	Benchmarks	Comments		
NA64-e	3x10 ¹² eot, electrons, 100 GeV	< LS3 (2025) (approved)	CERN-SPSC-2018-004 ; SPSC-P-348-ADD-2.	BC1, BC2, BC9	Extrapolation from data		
FASER	150 fb ⁻¹ , pp@13 TeV	< LS3 (2025) (approved)	arXiv:1812.09139 ; CERN- LHCC-2018-036	BC1, BC9, BC9, BC11	Full simulation ? Bkg included?		
NA62-dump	10 ¹⁸ pot, protons 400 GeV	< LS3 (2025) (approved)	CERN-SPSC-2019-039 ; SPSC-P-326-ADD-1	BC1, BC4, BC5, BC6, BC7, BC8, BC9, BC10, BC11	Full simulation, bkg from data		
milliQan	3 ab ⁻¹	First run: 2022		BC3			
nTOF	6x1017 pot, protons, 20 GeV	2022-2023	INTC-I_233	BC1	New experiment		
NA64-mu	Up to 2x10 ¹³ mot, muons, 160 GeV ~10 ⁷ μ/spill	LS3 (2026) < run < LS4 (2031) Pilot run 11/2021	CERN-SPSC-2019-002 ; SPSC-P-359, CERN-SPSC-2018-024 ; SPSC-P-348-ADD-3 1903.07899, 2110.15111	BC2	Full simulation, Bkg included.		
SHADOWS	Phase1: 10 ¹⁹ pot, protons , 400 GeV Phase2: 5 10 ¹⁹ , protons, 400 GeV	LS3 < run < LS4 (2031) LS4 < run < LS5 (2035)	EoI: 2110.08025	BC4, BC5, BC6, BC7, BC8, BC10, BC11	Fast simulation, bkg being estimated using dump data in ECN3		
In green: already approved In black: under consideration							

PBC experiments/projects able to produce results between 10 and 20 years

Experiment	Dataset assumed for sensitivities, beams	Tentative Timescale	References	Benchmarks	Comments
SHIP	2x10 ²⁰ pot, 400 GeV protons	2037+ ?	CDS: CERN-SPSC-2019- 049 ; SPSC-SR-263 Progress Report: CERN- SPSC-2019-010	BC1, BC2, BC4, BC5, BC6, BC7, BC8, BC9, BC10, BC11	Full simulation, bkg included Based on MC sample: 1.8x10 ⁹ pot, with p>1 GeV from Progress Report, p. 24, CERN- SPSC-2019-010 ; SPSC-SR-248)
KLEVER/NA62 high intensity	A few 10 ¹⁹ pot/year	After LS4 ?	1901.03199	BC4, BC9,	Full simulation, bkg evaluated but not included in results?
СОДЕХ-Ь	300 fb ⁻¹ , pp@14 TeV	2038 (end of HiLumi) CODEX-beta could start after LS3	EOI: 1911.00481 Background: 1912.03846	BC4, BC5, BC6, BC7, BC8, BC10, BC11	Fast simulation, background evaluated but not included in results?
MATHUSLA	3 ab ⁻¹	2038 (end of HiLumi)	Physics case: <u>1806.07396</u> LoI: <u>1811.00927</u>	BC4, BC5, BC6, BC7, BC8, BC10, BC11	Fast simulation, no bkg (bkg being evaluated with data)
FLArE@FPF	3 ab-1	2038 (end of HiLumi)	2109.10905	DM via scattering (BC2)	Fast simulation, no bkg
FASER-2@FPF	3 ab-1	2038 (end of HiLumi)	2109.10905	BC1, BC4, BC5, BC6, BC7, BC8, BC9, BC10, BC11	Fast simulation, no bkg
FORMOSA@FPF	3 ab ⁻¹	2038 (end of HiLumi)	2109.10905, 2010.07941	BC3	Fast simulation, no bkg
Gamma Factory	Laser on stripped ions (LHC)	Still undefined PoP crucial to understand.	2105.10289 (DP)	BC1, BC6	Fast simulation, no bkg



Dark Sector Snowmass effort

Detailed study from HEP community to understand dark sector performance

- Trigger
- Tracking & Vertexing efficiency
- Calorimeter & Particle ID
- Mass reconstruction

Proton vs. Electron Beams

Proton		Electron	
• nuclear collision length ~ 10 cm	$L \sim n_{ m atom} \; \ell$	• radiation length ~ 1 cm	
• QCD reactions	$lpha_s \gg lpha_{ m em}$	• EM reactions	
• γ + π + μ + ···	dark Higgs, axion, leptophilic scalar	• y + ···	
• Main Injector (FNAL), SPS and LHC (CERN)	$100 \text{ GeV} \gg 1 \text{ GeV}$	• LCLS (SLAC), CEBAF (JLab)	

SpinQuest: construction and commissioning status

NMR Signal Out

To Pump

- NMR Coll

To Pumps

Target installed in cave with nearly complete connections to cryo-platform above

Target commissioning during summer shutdown, start data taking in late October / early November with protons

2018 UVA cooldown polarization data -Cooldown at Fermilab next month

Quantum Technology Helium Recovery 200 L / day capacity – self sustaining

