

Strategic Plan for Software and Computing at the Laboratory

James Amundson 2022 June PUBLIC PAC Meeting June 23, 2022

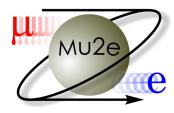
Computational Science and Artificial Intelligence at Fermilab

(Not Core Computing)

Objective: Support the scientific mission of the laboratory

Maximizing Fermilab's Scientific Output

By the end of the decade, Fermilab's experimental program will be dominated by DUNE and HL-LHC, with significant contributions from the Short Baseline Neutrino program and Mu2e.

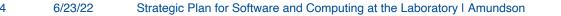

• In addition:

3

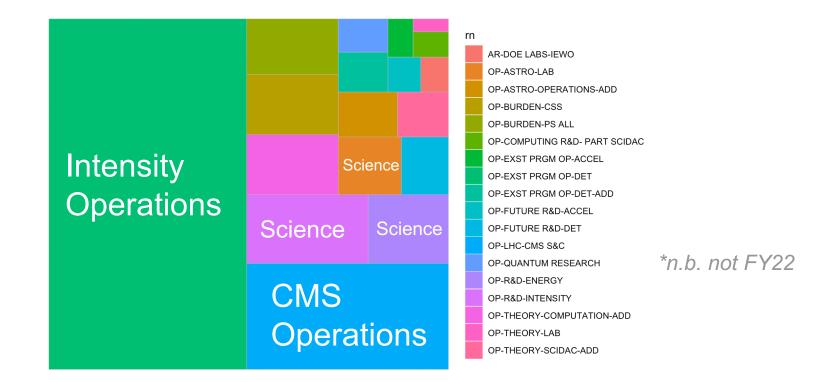
- small experiments
- potential for new customers, especially cosmic

DEEP UNDERGROUND

FXPFR


Computing Strategy

100,000 ft. view


- Maintain core Fermilab computing facility
 - Focus on things that cannot be done as well or better elsewhere
 - Mass storage is the core of Fermilab's computing facility
- Take maximum advantage of non-HEP resources
 - DOE Advanced Scientific Computing Research (ASCR)
 - Exascale/HPC Computing resources
 - Software
 - NSF Supercomputing resources
 - Other resources (e.g., Open Science Grid)
 - Commercial resources
- Embrace AI/ML developments
 - Enable scientific AI/ML applications
 - Utilize AI/ML across the lab
- Support computational science as appropriate
 - In particular, simulation
 - Assist the field in modernization of computing: GPUs, specialized services

🚰 Fermilab

Funding Support for Scientific Computing at Fermilab

5

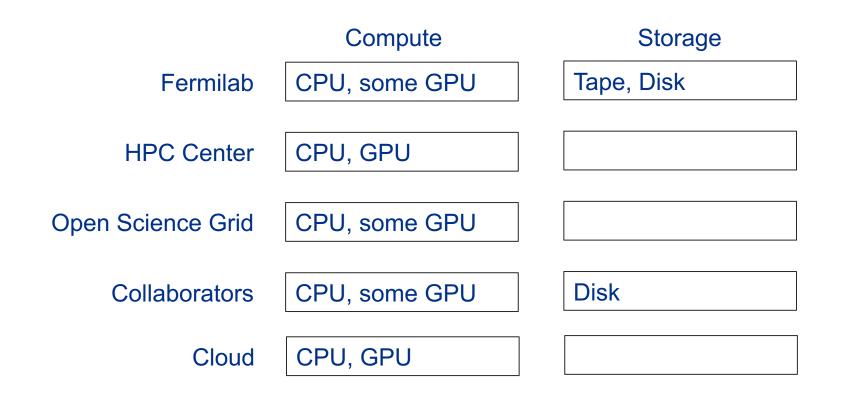
Computing Across Frontiers

- Intensity Frontier
 - NOvA, MicroBooNE, etc.
 - DUNE, SBN
 - Muon g-2, Mu2e
- Energy Frontier
 - CMS
- Cosmic Frontier
 - DES, Rubin, etc.
- Theory
 - Lattice QCD
 - Generators
- Accelerator
 - Simulation
- Other
 - Primarily R&D

Experiment Software			
Frameworks Simulation			
Common Software			
Computing Services			
Hardware			

Foundational Layers

8


Hardware

- CPU, GPU and Storage Resources
 - Both on- and off-premises
- Accessing resources requires...

Computing Services

- FIFE for traditional resources
 - Not discussed today
- HEPCloud for Cloud and HPC

Hardware

🗳 Fermilab

Storage Research and Development

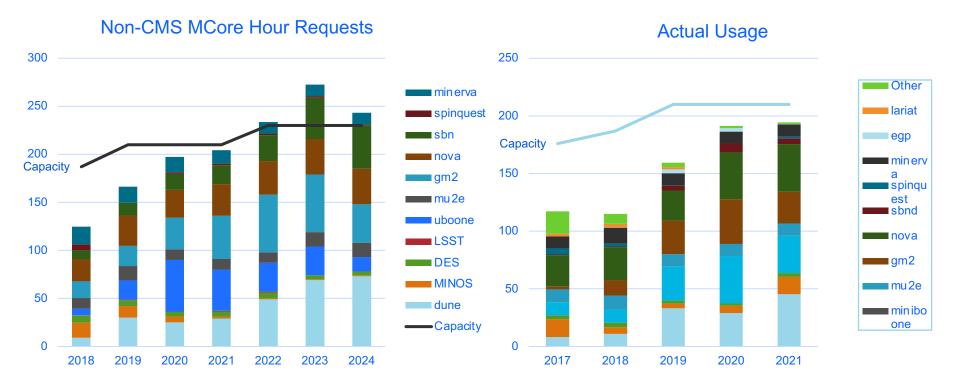
- Fermilab has selected CERN's CTA as a replacement for Enstore in tape layer
 - Informal agreement to collaborate with CERN
 - Formal agreement in the works
- Evaluating multiple technologies in the disk layer
 - dCache
 - Existing collaboration with DESY
 - Integrating with CTA
 - EOS
 - Currently required by CTA, used by EOS
 - ceph
 - Broad usage in multiple industries
 - Could replace very expensive NAS storage
- Emphasizing Rucio within software layer
 - Broad community support
 - Provides mechanism to enforce data lifetimes
 - Experience shows that manual lifetime management is not realistic

Storage R&D: Tape

- Following two general thrusts: tape/archival storage evolution and disk storage evolution
- Tape: replacing legacy Enstore system with CERN Tape Archive (CTA)
- Development/changes to CTA necessary
 - Enable CTA to read tapes with CPIO wrapper that most Enstore tapes are written in
 - Develop metadata migration for Enstore->CTA
 - Small File Aggregation (SFA) functionality replacement
 - Joint with DESY: dCache frontend for CTA
- Current status
 - Running CTA on partition of Fermilab tape library
 - Able to read/write Enstore formatted tapes with CTA
 - Fermilab team has made CTA code commits
 - Remaining significant item for all libraries: metadata migration
 - Remaining item for Public Enstore: SFA solution with CTA
 - Development of this will continue in parallel with migration beginning for CMS

Tape Evolution Timeline

- Approximate Enstore->CTA migration plan
 - Intend to start with CMS tape library (fewer tape families and no SFA)
 - 3Q'22
 - Implement and test CTA metadata scheme for Enstore tapes
 - Architect/procurement of servers for production CTA
 - 4Q'22
 - Configure/test CTA servers
 - Begin metadata migration from Enstore to CTA
 - 1Q'23
 - New data ingest to CTA only for CMS
 - Begin process for Public Enstore


Very preliminary

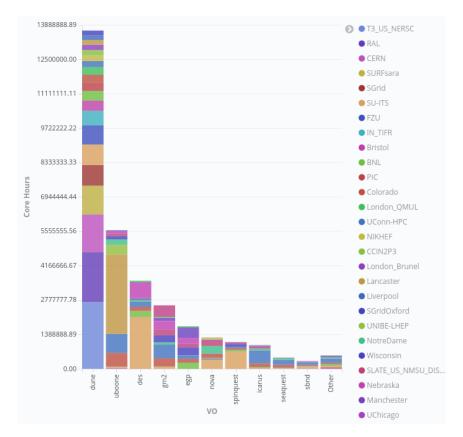
Storage R&D: Disk

- Evaluation of **Ceph** as a disk-based storage solution with several applications
 - CephFS-based replacement for NAS storage currently used for interactive computing
 - Ceph Object Store for analysis computing and other applications
- Current status
 - 1PB Ceph test cluster configured for CephFS and Object store use
 - CMS object store evaluation (USCMS Ops program funded)
 - Interactive computing evaluation of CephFS (starting with DESI/LSST)
- Future
 - Test cluster with newer hardware
 - Evaluating SSD/HDD mixture and Erasure Coding schemes

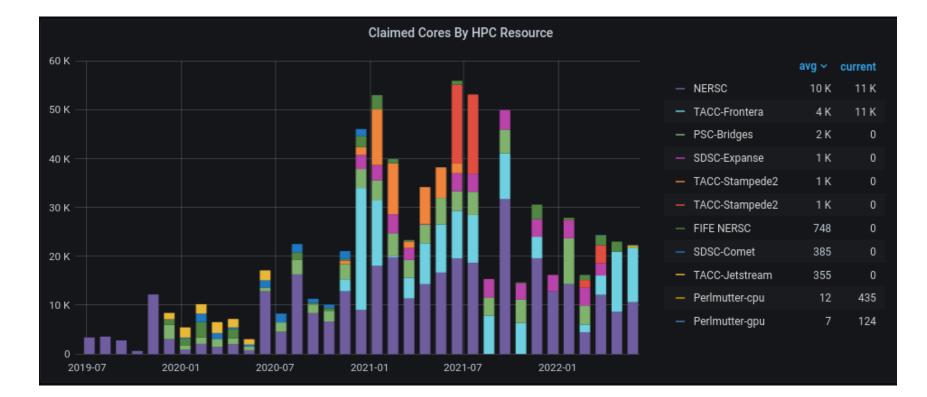
Non-CMS Experiment CPU Requests and Usage

Fermilab

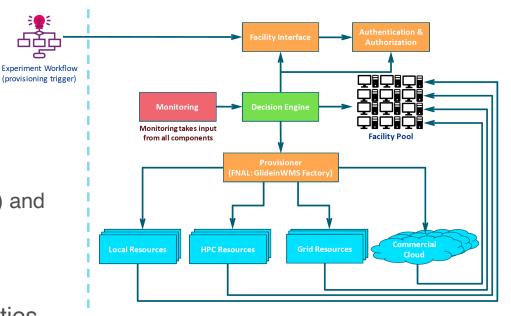
Fermilab GPU Resources


- Bootstrap problem
 - Experiments do not request GPUs if they think we do not provide them
 - We do not provision GPUs if experiments do not request them
- Annual request to DOE for funding for initial production GPU facility
 - Positive feedback
 - No funding to date
- Slowly increasing GPU purchases with portion of existing funds
 - 12 A100 GPUs purchased with FY21 funds

	FY21	FY22	FY23	FY24
Planned GPU acquisitions (thousands	105	35	70	70
of NVIDIA A100-equivalent hours)				
Planned retirements (thousands of	2	20	30	25
NVIDIA A100-equivalent hours)				
GPU capacity (thousands of NVIDIA	250	265	305	350
A100-equivalent hours)				


Non-Fermilab CPU Usage

- HPC sites (allocations)
- OSG (opportunistic)
- GCE, AWS (paid)
- If experiments have special agreements with collaborating sites, we can enable access to their individual allocations
- Containers should limit issues at remote sites
- Some VOs could push more offsite



HPC Usage

HEPCloud

- HEPCloud is our solution for accessing a heterogeneous set of resources, including cloud and HPC
- HEPCloud is currently running in production
 - HPC centers including NERSC (DOE) and TACC (NSF)
 - Commercial cloud providers including Google and Amazon Web Services
- Progress on Leadership Class Facilities
 - Argonne (ALCF) and Oak Ridge (OLCF)
 - Two solutions for problem of contacting nodes isolated from general network
 - Still ramping up production

HEP-CCE

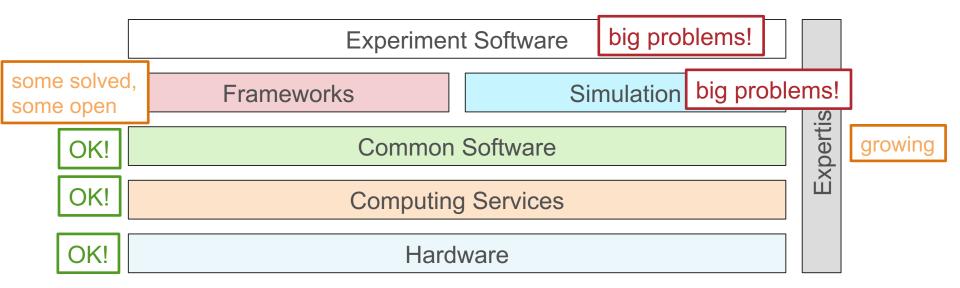
- Goal is to enable HEP on Exascale
- Funded by DOE CompHEP
- Multi-year project
- Multi-lab project
 - Fermilab
 - Argonne
 - Brookhaven
 - Lawrence Berkeley
- Multi-thrust project
 - Platform Portability
 - Device-independent approaches to GPUs
 - I/O
 - Workflows
 - Generators

High Energy Physics - Center for Computational Excellence

https://www.anl.gov/hep-cce

DOE HPC/Exascale Resources

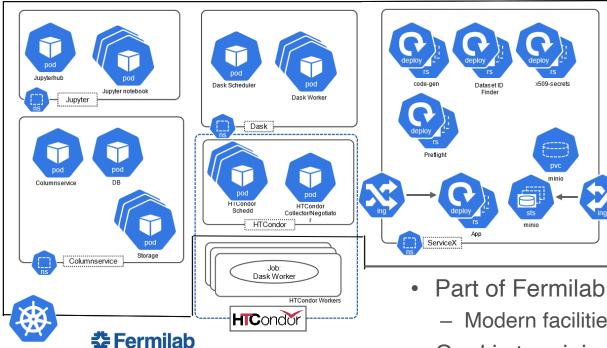
- NERSC
 - Cori
 - Haswell, 2,388 nodes, 2.81 PFlops
 - KNL, 9,688 nodes, 29.5 PFlops
 - Perlmutter (Phase 1)
 - AMD + NVIDIA, 1,536 nodes
 - 3.9 PFlops CPU
 - 59.9 PFlops GPU (94%)
- ALCF (Argonne)
 - Current: Theta (also ThetaGPU)
 - KNL, 4,392 nodes, 11.7 PFlops
 - Next: Aurora (exascale!)
 - Intel CPU + GPU, > 9,000 nodes, > 1,000 PFlops
- OLCF (Oak Ridge)
 - Summit
 - IBM Power9 + NVIDIA, 4,608 nodes, 200 PFlops
 - Frontier (exascale!)
 - AMD CPU + GPU, 1,100 PFlops



Barriers to Exascale for HEP

- Allocations
 - LCF Allocation mechanisms are not compatible with HEP computing
 - Political problem, not a technical problem
 - First ALCC grant for CMS recently awarded
 - tiny
- Job submission/authentication, etc.
 HEPCloud!
- Workflow management
 - HEPCloud!
- Data access
 - Not yet limiting
 - Addressed by CCE
- GPU Utilization
 - Addressed by CCE

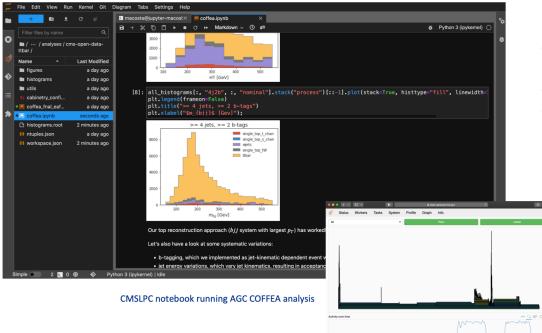
Problems with GPUs



What if HEP on Exascale Fails?

- Biggest problem is for CMS
 - CMS is making good progress
 - CMS Software and Computing is its own budget
- Intensity Frontier problems not imminent
 - Worst case scenario: more compute hardware would have to come out of Computing and Detector Operations budget
 - Assuming a flat budget, would require a corresponding reduction in staffing
 - In FY23, a computing professional costs \$422K
 - The best way to ensure success of Intensity Frontier on Exascale would be to find more funding for LArSoft

Elastic Analysis Facility

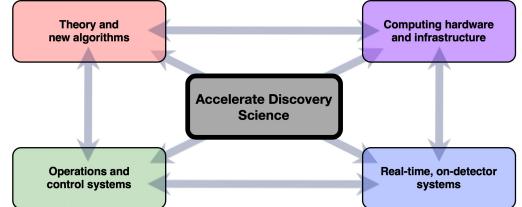

- Part of Fermilab computing strategy
 - Modern facilities, modern tools
- Goal is to minimize time to scientific insight

😤 Fermilab

Facility is available as a beta release

Elastic Analysis Facility Beta Release

A JupyterHub-based deployment (on Beta) https://analytics-hub.fnal.gov



- 43 Beta users (thank you!)
- 22 Notebook flavors
- 1.2 Tb Ceph persistent storage allocated (of 45TB)

AI/ML at Fermilab

- AI/ML strategy at Fermilab extends across divisions
 - New dedicated AI/ML professional hired for accelerator operations
- Recent GPU purchases aimed at AI/ML use
- AI Associate program created for staffing purposes
 - Term positions
 - Do not require physics deliverables
 - Associates can spend time at the lab for career development
 - Recently had first permanent staff member come from associate program

AI/ML Projects at Fermilab

- Primarily driven by smallish funding opportunities
- Dominated by "Experiment Software" layer
- Long-awaited major funding opportunity recently materialized
 - DE-FOA-0002705: 2022 Artificial Intelligence Research for High Energy Physics
 - Not a game-changing level of funding
 - Fermilab led three proposals
 - Fermilab participated in six proposals led by other labs
 - Results pending

Support for Simulation at Fermilab

- Detector Simulation
 - Geant4 requires ongoing support
 - Computing
 - Physics Models
 - Experiment integration
 - Funding falls between the cracks in DOE OHEP
- Collider Generators
 - Robust program in both theory and computing
 - SciDAC4 Support
 - Mature community

- Neutrino Generators
 - Fundamentally more complicated than Collider Generators
 - Less mature community
 - Requires support in many areas
 - Nuclear and Particle Theory
 - Model integration
 - Experiment integration
 - Programming issues
 - Release management
 - Effort in Theory Division
 - Computing effort focused on GENIE
 - Steven Gardiner recently hired as associate scientist

🗲 Fermilab

Our Computing Strategy is the Conclusion

100,000 ft. view

- Maintain core Fermilab computing facility
 - Focus on things that cannot be done as well or better elsewhere
 - Mass storage is the core of Fermilab's computing facility
- Take maximum advantage of non-HEP resources
 - DOE Advanced Scientific Computing Research (ASCR)
 - Exascale/HPC Computing resources
 - Software
 - NSF Supercomputing resources
 - Other resources (e.g., Open Science Grid)
 - Commercial resources
- Embrace AI/ML developments
 - Enable scientific AI/ML applications
 - Utilize AI/ML across the lab
- Support computational science as appropriate
 - In particular, simulation
 - Assist the field in modernization of computing: GPUs, specialized services

