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Outline

* [ntroduction to DUNE

o Status of DUNE
o Status of LBNF

e Summary

« Lot’s of additional slides for FAQs
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DUNE Physi

A

cs Goals

Sanford
Underground

= Fermilab

Research
Facility

Unambiguous, high precision measurements of Am2;,, dcp, Sin20,3, SiN22045 in a single
experiment

Discovery sensitivity to CP violation, mass ordering, 6,3 octant over a wide range of
parameter values

Sensitivity to MeV-scale neutrinos, such as from a galactic supernova burst

Low backgrounds for sensitivity to BSM physics including baryon number violation
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Neutrino oscillations in DUNE

Deep Underground Neutrino Experiment

Sanford - Fermilab
Underground — e g,

ResearCh > —— e > WPP <
Facility e = =

Incoming beam:
100% muon neutrinos

1600 1400 1200 1000

Probability of detecting electron, muon and tau neutrinos

At the Near Detector we measure the rate, composition and spectrum
of the neutrino beam before oscillations

At the far detector we measure v, (v_u) disappearance

and v, (V) appearance
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Why is this the best configuration for the
expe ri m e nt CPV Jcp Coverage vs Baseline TVIH Scp Coverage vs Baseline

1 1.2
-g woE 30 CPV E
I Normal Hierarchy
%5 08 sini(20,,) =0.00 == Nov. Bkgd 51
07E.35KT LAr, 545 yrs == Withv, Bkgd ol —— Nov, Bkgd

Baseline is optimized

v,+V, per 0.25 GeV

 Beam spectrum covers
the oscillation curve

Detector Technology
enables precise energy
reconstruction
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DUNE — Phase 1

LBNF will provide caverns for 4 detector modules at SURF

- 1stdetector to be installed in NE cavern has horizontal drift (like ICARUS and
MicroBooNE)

- 2nd detector will go into SE cavern and has vertical drift (capitalizing on elements of
the dual phase development)

CRP** Vertical Drift

Note : DUNESCience begins *Anode Plane Assemblies

when FD1 is filled and turned on **Charge Readout Planes
and recording tracks
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DUNE — Phase 1

» Near Detector Complex houses a
set of detectors that work in concert
with each other to predict the far
detector spectrum and monitor the
beam stability.

* These include

— Aliquid argon TPC (ND-LAr) plus a
Muon Spectrometer (TMS) ; these
can move off-axis (PRISM system)

- An on-axis beam monitor (SAND) ;
SAND will also make precision
measurements of multiple channels of
neutrino interactions, leading to more
control of systematics
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Definitions

 DUNE Phase | (accomplished with LBNF/DUNE-US and PIP-II
projects and international partners)

- Two far detectors : 1 HD + 1 VD
- Near detector = NDLAr + TMS + SAND + PRISM movement
- 1.2 MW beam power from PIP-II
 DUNE Phase Il (or upgrade paths)
- Additional mass at Far Detector
- A more capable near detector (MCND) (could replace)TMS

- Increased beam power (up to 2.4 MW) provided by Booster
replacement
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Neutrino oscillations in DUNE

Sanford
Underground
Research
Facility

Fermilab

« The DUNE neutrino oscillation program is exceptional due to several key features of the
experiment and facility design :
- The 1300 km baseline between Fermilab and SURF location for the far detectors enables an
unambiguous measurement of the neutrino mass ordering (mass hierarchy)

- The detector’s on-axis location provides for a wide-band energy spectrum of neutrinos to be
seen in the near and far locations enabling detailed fitting of the oscillation parameters

- The liquid argon detector technology enables precise reconstruction of the neutrino interactions

- The Near Detector complex at Fermilab will support near detectors that will provide unprecedented
control of systematic uncertainties in the prediction of the un-oscillated neutrino flux
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Status of DUNE

* Far Detectors * Near Detectors

- Designs are quite mature and - Work continues on prototyping
prototyping activities are in full the LarTPC modules for the
swing at CERN neutrino 2x2 demonstration in the
platform NuMI beam

- The Far Detector and - Collaboration decision on the
Cryogenics sub-project (FDC) inner tracker for SAND has led
is planning to be ready for CD- to an updated Consortium
2 in 2023 organization with focus on

designs for the Straw Tube
Tracker (STT) and a liquid
argon target volume (GRAIN)

- Designs will mature over the
next two years
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ProtoDUNE-I (HD) — Prot
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 ProtoDUNE | consisted of two drift volumes each with 3 APASs, for a
total of 6; this enabled a full demonstration of deployment with
upstream, downstream and middle modules of field cages

* ProtoDUNE Il will reduce in size to two volumes with only two APAs
each; one side will be deployed with upside down APAS to mimic the
bottom of the double decker layers that are in DUNE
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ProtoDUNE-II HD assembly

ProtoDUNE-HD-Module
0

2022

2023

Detector Installation

Close TCO and Fill
Cryostat

Detector Operation
(Cosmics)

October

Novemb
er

Decembe]
r

January

February

March

April May June July

Detector Operation
(Beam)

FD1 Cold Box Tests

APA #1

APA #2

APA #3

APA #4
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Contributions
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2020 Update of the A
European Strategy for
Particle Physics

D

Major developments
from the 2013 Strategy

Europegn Strategy

B. The existence of non-zero neutrino masses is a compelling sign of new
physics. The worldwide neutrino physics programme explores the full scope of the rich
neutrino sector and commands strong support in Europe. Within that programme, the
Neutrino Platform was established by CERN in response to the recommendation in the
2013 Strategy and has successfully acted as a hub for European neutrino research at
accelerator-based projects outside Europe. Europe, and CERN through the Neutrino
Platform, should continue to support long baseline experiments in Japan and the
United States. In particular, they should continue to collaborate with the United
States and other international partners towards the successful implementation of
the Long-Baseline Neutrino Facility (LBNF) and the Deep Underground Neutrino
Experiment (DUNE).
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Collaboration Demographics

International Collaboration

Faculty 654 676 195 200
Post Docs 249 240 79 77
Graduate Students 324 319 109 104
Engineers, CP 164 158 54 67
DUNE-US
Faculty 291 298 85 90
Post Docs 127 123 37 35
Graduate Students 143 146 44 38
Engineers, CP 88 85 35 41

2021 effort reporting just completed.
Effort reporting topics are completely aligned with Collaboration

Organization, hopefully leading to more meaningful and accurate results
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DUNE Collaboration Organization

Institutional Board Spokespersons
Advisory
Committee
Co-Spokespersons
|
Int. Resource Tech'nical Physics Executive Board
Coordinator Coordinators Coordinators
) Construction : Authorship &
Conso‘rtla Resource Consortia .Phy5|c's, Publication
Coordinators Simulations Board
: / \_ and
I Analysis Groups
1 y - Speakers
Project : Funding Computing Committee
Agency Consortium
DUNE-US : DOE Beam Interface
DUNE-UK :UKRI/STFC WG

DUNE-Italy : INFN
DUNE-France: IN2P3
DUNE-Spain I

DUNE-Brazil : FAPESP Roles and responsibilities described in DUNE
DUNE-Swiss : Bern,

SNSF Collaboration Management Plan

DUNE-CERN
DUNE-Czech
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International DUNE Detector Construction Consortia

Near Detectors

ND-LAr

Far Detectors

Data Acquisition
FD1, FD2, ND

S =
] | SOl ——
\I l -~ \:j.;-“

Anode Plane
Assemblies - FD1

Sy =

| | Rl —

Charge Readout
Planes - FD2

= TpC

Electronics
FD1, FD2-B

Electronics
FD2-T

Photon Detection

FD1, FD2

High Voltage
FD1, FD2

INY

] / 1)

Vo A

-\

I |

CALCI

FD1, FD2
I—

18

6/21/22

Rameika | PAC June 2022

£& Fermilab (\



International Contributons

WA
RN

FD1 - Direct M&S

D

= DOE.CNSTR = Canada = CERN

FD2 - Direct M&S

N
|

= CSIC = CZECH = INFN » DOE.CNSTR = In Kind = IN2P3 = CERN
= Brazil =Non-DOE = UK = CZECH = INFN s UK
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v +V, per 0.5 GeV

V'simé/GeV (1.1x 102' POT)

Key components of the long-baseline oscillation analysis
Use simulations to -

spectrum at far detector
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Important role of ND

« Far detector events come in all shapes and sizes; in general within a well defined
fiducial volume they are fully contained; never-the-less they are challenging to
reconstruct as there are missing particles (neutral) which led to mis-reconstructed

energy

By having a ND
functionally same
as FD, we get
equivalent
reconstructed E,
(Left : True 2.5 GeV v)

-1000}
2000}

-3000}

LAr TMS

z (mm)

1000

[

>

w  »
Eneffy deposit{MeV)

w

1020 1040 1060 1080

But we can’t build a ND of
similar size as the Far
Detector,

we measure the muons
with a supplementary muon
monitor
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Complications in the Near Detector

* Due to the high intensity of
the 10us spill the neutrino

e, Sah *\ , interactions “pile-up” on
S PR 1 themselves, making it difficult
M s s8any to reconstruct individual
e, AN interactions

 This problem is mitigated by
constructing the detector in
modules to minimize overlaps

 Pixel readout and modular
light collection are used to
match tracks and light to
individual events
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PRISM technique in Long Baseline data
taking and analysis : DUNE PRISM

Traditionally : use on-axis near detector to Neurmo e éM’\
j a‘,b On axis
PREDICT an un-oscillated spectrum at R 0

the Far Site fw

\¢°0) 23 4 5
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FD DATA &
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The Near Detector Challenge

In February 2022, DOE/HEP gave guidance to the DUNE-US Near
Detector sub-project that the DOE contribution to the Near Detector
would be capped at $200M, including all costs to date ($23M as of

March 2022)

Additionally, the estimate to complete needed to be separated into
what is needed to deliver threshold KPPs, and objective KPP’s, such
that there would be 50% scope contingency (~$90M) in the objective
KPP

The sub-project has addressed these constraints by defining the
threshold KPP as the capability to monitor the neutrino beam such that
far detector data could be collected and deemed stable for physics
analysis; and that this can be achieved with the muon spectrometer
(TMS), the downstream component of the LArTPC detector

The liquid argon TPC itself is in objective scope, and the sub-project
and the DUNE collaboration are working together to find a way to “stay
In the cost box”

25
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The take-away

* Far detectors - statistics
* Near detectors - control systematics
o Statistics + controlled systematics ‘ Precision Physics
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What physics results will we have before DUNE?

- T2K and NOvVA cannot reject the CP conservation hypothesis
definitively and will not precisely measure éqr , but they can give
indications that CP is violated

Mass ordering is not resolved with T2K or NOVA, but the joint fit may
have some sensitivity

The Jiangmen Underground Neutrino Observatory in China (JUNO) is
expected to come on line in the next few years

Follow-on experiment to Daya Bay

20 kTon liquid scintillator, 700-m underground, detecting reactor anti-
neutrinos

Goal is precision measurements of 05, Am?,;, Am?;, and
neutrino mass ordering to 3-4c with 6 years of data taking

With 10 years of data taking, they report sensitivity to past core-
collapse supernova, and sensitivity to proton decay.

JUNOQO'’s success is based on achieving exquisite energy resolution,
acknowledged by its proponents to be extremely challenging.

27
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T2K & NOvVA Neutrino 2020*

Super-Kamiokande J-PARC
f Near Detector 280 m
4

[l(ll!m

Neutrino Beam

295km

T2K Run 1-10 Preliminary v-beam NOVA Preliminary ,
c e e v-beam NOVA Prelir]
S 25 v-mode p-ring E - i
c T F o> Vb0 ] L +FD data Z s LvPP e
F = — 150 [~ g [ -4+FDdata
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ch . E w2 Vo o0 3 > — No oscillation S [ - TeKBesti K
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C ] o100 — — |
|- L] — ~ x
Wb + v-mode 7 o | Background © [
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) S \ L e Reconstructed neutrino energy (GeV)
0

1 2 3 4
Reconstructed neutrino energy (GeV)

*Neutrino 2022 updates did not include new data ; new analyses were presented
Both experiments will remain statistics limited for their remaining run time
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Summer 2020 -> present

T2K Run1-10 Preliminary NOVA Preliminary
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Neutrino mode e-like candidates N dgp= B dcp= ?“/ 2 ‘* 202? best fit |

20 40 60 80 100 120
Total events - neutrino beam

« T2K and NOvVA continue operations and updated results are expected this
summer

- Two sets of results have different best fit but are not in significant tension
« Both experiments have worked on advanced analysis packages
* The experiments are working on a joint analysis, aiming for later this year

« T2K s installing an upgraded Near Detector and adding new samples to
their fit
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Hyper-Kamiokande Experiment: A Snowmass White Paper

Contributed Paper to Snowmass 2021

J. Bian,! F. Di Lodovico,? S. Horiuchi,® J. G. Learned,* C. Mariani, * J. Maricic,*
J. Pedro Ochoa Ricoux,! C. Rott,>% M. Shiozawa,”®9 M. B. Smy,' H. W. Sobel,!, R. B. Vogelaar®
(on behalf of the Hyper-Kamiokande Collaboration)

! Department of Physics and Astronomy, University of California Irvine, Irvine CA 92697-4575, USA
2King’s College London, Department of Physics,
Strand Building, Strand, London, United Kingdom
3 Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
4 Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
5 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
8 Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
" University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan
8 University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (WPI),
University of Tokyo Institutes for Advanced Study, Kashiwa, Japan
9 University of Tokyo, Newt-generation Neutrino Science Organization, Kamioka, Japan
(Dated: March 7, 2022)

arXiV . 2203 .O 2029V 1 [hep_ex] 3 Mar 2022 FIG. 1. Illustrati?n of the Hyper-Kamiokande first cylindricz.il tank in Japan
: includes - Data taking expected to start in 2027
Science program includes : 260 kTon (5x total SK; 8x FV)

Accelerator neutrino oscillations,
atmospheric neutrinos, solar and supernova neutrinos, searches for nucleon decay

v NC=° interaction v,, CCQE interaction

Ve CCQE interaction

http://www.hyper-K.org/doc/Hyper-K_FPCP2015.pdf
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http://www.hyper-k.org/doc/Hyper-K_FPCP2015.pdf
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DUNE simulation
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In DUNE we have unique

Separation of the mass
ordering .....

Longer baseline

Wideband beam

Precision detector event reconstruction
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..... DUNE : enhanced by the wide-band beam
‘ spectrum shape carries information ‘ proper energy reconstruction is essential
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Metric of Capability

» kTon-MW-years is a metric of capability

* In 2015, P5 said to show capability to accumulate an
exposure of 120 kTon-MW-years in the 2035 time-fram

* The intent was to evaluate the proton beam power, the
detector mass and the timescale :

- Mass -> 20kT
- Proton Power -> 1.2 MW
- Time frame -> Syears
» This would be achievable with a beam start in ~2030

g
(=
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Math to reach 120k T-MW-yrs

« ~>20 KT operating BEFORE first beam neutrinos
- Needs 6 MW-yrs

1.2 MW in 3 year ramp-up
« 6-1.2=48;48/1.2=4yrs
 1st neutrinos in ~2030 -> 120 kT-MW-yrs by 2037

Currently operating

Large Projects

Mu2e

LHC: Phase 1 upgrade

HL-LHC

LBNF

ILC

|
|
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Proton power ramp-up

1.2MW @ 100% efficiency=

. 2621 pot
 The base assumes uptimes for : e21 pot/year

. PIP =1l =90% ——
. Recycler, Ml = 85% B
- Switchyard 120 = 10%

« LBNF beamline = 70%

2.0E+21

1.5E+21

Integrated POT

1.0E+21
5.0E+20

0.0E+00
. . . 5/6/2032 5/6/2033 5/6/2034 5/6/2035
This 3-yr ramp-up is equivalent to

one year of operation at 1.2MW from Day 1

Physics sensitivities are always based on the integrated POTs
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Comparison of DUNE with the “competition”

 DUNE and Hyper-K

- Very different parameters in approach to accelerator oscillations:

Baseline, beam spectrum and detector technology
- Observation of supernova in different channels (vs-bar vs v,)
- Searches for nucleon decay are in different detection channels
- Very different systematics in the two experiments

- Complimentary verification of important science measurements is essential

« Experiments with sensitivity to the mass ordering

- JUNO, IceCube, KM3Net, along with NOVA and T2K, will try to measure the mass
ordering, but the results depend on the kindness of nature

« DUNE is the only experiment that is guaranteed to independently measure the
mass ordering and d¢p in the same experiment

« DUNE will make precision measurements of the full PMNS framework!

We look forward to emerging results over the coming decade !
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Evolution of DUNE
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« Three components : detector mass, improved systematics,
beam power

« Each ~ worth a factor of 2 in sensitivity (2 statistical, 1
systematics)

 We look forward to discussions at Snowmass and with P5
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Total Excavated Rock (In-Situ YD3) to

Status of LBNF
Date 30.4% as of 13 Jun 2022

Far Site
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mmmm) Excavation Direction (Red Team)

mmmm) Excavation Direction (Blue Team)
Excavation Completed
$& Fermilab Ui\

Excavation and Shotcrete Complete

Concrete Complete

Im
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Cavern Excavation Completion Percentage (as of 13 June)

— — K
Pilot Pilot Pilot
100% 100% 100%
Cut 3 Cut1 Cut 2 Cut 3 Cut1l Cut 2 Cut 3 Cut1 Cut 2
7% 100% 20% 50% 15%
C1 C2 C3 C4 C1 C2 C3 C4 c1 C2 c3 C4
D1 D2 D3 D4 D1 D2 D3 D4
E1 E2 E3 E4 E1 E2 E3 E4
F1 F2 F3 F4 F1 F2 F3 F4
G1 G2 G3 G4 G1 G2 G3 G4
North Cavern South Cavern
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Excavation Progress — Supporting Access Drifts

Robotic Shotcrete Application (4850-13) & 4 CY LHV Mucker moving through expanded drift 4850-20 South Connector Drift Breakthrough
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Upcoming Project Reviews

REVIEW/MEETING PROJECT PLANNED DATE
LBNF/DUNE-US CD-1RR Director’s Review 23-27 May 2022 \/
LBNF/DUNE-US CD-1RR DOE IPR 11-15 July 2022

FSCF-BSI CD-2/CD-3 Directors Review (includes also
CD-3a for FDC and NSCF+B)

FSCF-BSI CD-2/CD-3 DOE IPR (includes also CD-3a for 15-17 November 2022
FDC and NSCF+B)

20-22 September 2022
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Schedule
Summary
With Critical
Paths through
Start of
Science (FD1)
and Beam-on

Notes:

- March 2022
reporting cycle

- Based on “CD-1RR”
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First science First beam vs
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Summary

« The 2014 P5 model for an international effort to explore the neutrino
sector and more, hosted in the United States, has tound reality in the
LBNF/DUNE enterprise.

* The commitments of international partners to the facilities of PIP-Il
and LBNF and the DUNE detectors are very significant; the 2nd
cryostat from CERN has enabled the realization of the Phase 1
program with 2 far detector modules — each of which has ~50%
contributions from non-DOE sources and a capable Near Detector
complex with major contributions from international partners.

« DUNE will be a best-in-class experiment that will make precision
measurements of neutrino parameters, be able to detect supernova
neutrinos, search for nucleon decay and physics beyond the standard
model.

« DUNE is unique in its approach to making these measurements, with
its key features being the long-baseline, wide-band beam and liquid
argon detector technology.

* The facilities provided by LBNF are world class and provide
opportunities for decades of discovery beyond what we even
contemplate today.

 There is no competition that can rival this capability.
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DUNE Collaboration Meeting May 2022

\
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Backup Material for FAQs

45  6/21/22 Rameika | PAC June 2022 £ Fermilab U(VE



v, disappearance
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v, appearance
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Why 1300 km baseline?
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Why wide-band beam?
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Liquid argon basics

ense Wires

U \5 X V wire plane waveforms
/¥
/

4/% e - Drift ionization charge : High
///;// X Voltage
~=l
Crose T2 | ()] g
me o S| - HV power supply and feed-through
- Cathode Plane

- Field Cages

- Resistive dividers

» Collect ionization charge : Sense
wires, electronics

- Anode Planes

- Front-end amplification, digitization,
readout

« Collect scintillation light :
> wavelength shifters, light guides,
nBooNE light collection electronics

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.
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Why liquid argon?

« We can measure both the hadronic and leptonic parts of the event to high

precision for energy resolution and particle ID.

« Compare to Water Cherenkov rings

o AL

18cm

7cm NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017. BNB DATA : RUN 5929 EVENT 1582. APRIL 15,

v_, CCQE interaction Ve NCr?° interaction
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International DUNE Experiment
- Proposed post-P5 (2015)

« 40 KT fiducial mass of LAr in 4 detector modules
- “capable” Near Detector — proposed as a Non-DOE activity

« 1.2 MW proton beam power — PIP-Il Project
Aug 2016 IPR

LBNF/DUNE - Jun-16 Schedule Summary | mserome |
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On-Axis Beam Monitoring

Data examples are from MINOS
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DUNE partner contributions to FD1 and FD2

FD1 - Direct M&S FD2 - Direct M&S

/

»
b

/(/

"DOE.CNSTR=Canada = CERN =CSIC n CZECH « DOE.CNSTR = InKind =IN2P3 = CERN =CSIC = CZECH = INFN = UK
= INFN = Brazil =Non-DOE = UK
FD1 - Hours FD2 - Hours
= DOE.CNSTR = Canada = CERN = CSIC = CZECH = DOE.CNSTR = In Kind = [IN2P3 = Canada = CERN
= INFN = Latin America = Brazil =Non-DOE = UK =CsIC = CZECH = INFN =Non-DOE = UK
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Spring 2035
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JUNO
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