

17th annual Fermilab-CERN Hadron Collider Physics Summer School August 15 - 25, 2022 Fermilab **BSM Searches: Experiment II**

Zeynep Demiragli (Boston University)

FERMILAB-CERN HADRON COLLIDER PHYSICS

All and the state of the state

http://indico.fnal.gov/e/hcpss2022

An other look at the Simplified Models

Simplified Models

Main parameters of the model: mediator, two vertices, and a DM candidate

Extended to models with t-channel mediator and dark sectors

sbinþi

From EFTs to Simplified Models... multiple type of mediators are studied:

axial-vector vector $g_q \sum A_\mu \bar{q} \gamma^\mu \gamma^5 q$ $g_q \sum V_\mu \bar{q} \gamma^\mu q$ pseudoscalar scalar $y_f \bar{f} \gamma^5 f$ $g_q \overline{\sqrt{2}}$

Higgs Portals

From EFTs to Simplified Models... multiple type of mediators are studied

We have a special scalar particle!

Higgs Portal

Known Higgs decay branching fractions allow decays to invisible particles ~20%

Χ

Higgs

All Higgs production modes can be studied to tag the event

Higgs Production Modes

Higgs Production modes will determine the signature.

We discussed gluon fusion production mode => That's just monojet!

Higgs Production Modes

Higgs Production modes will determine the signature. Now lets look at VH production => Let us call it "mono-V"

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

σ(ggf) ~ 30 x σ (VH)

... but similar sensitivity in both searches!

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

σ(ggf) ~ 30 x σ (VH)

... but better sensitivity with Mono-V!

MET = 777 GeV

CMS Experiment at LHC, CERN Data recorded: Tue Nov 3 01:34:28 2015 CET Run/Event: 260627 / 1739677912 Lumi section: 941

Jets_{inv.mass} = 82 GeV

 $|\sum \text{Jet } \vec{p}_T| = 786 \text{ GeV}$

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

MET = 777 GeV

Jets_{inv.mass} = 82 GeV

CMS Experiment at LHC, CERN Data recorded: Tue Nov 3 01:34:28 2015 CET Run/Event: 260627 / 1739677912 Lumi section: 941

 $|\sum \text{Jet } \vec{p}_T| = 786 \text{ GeV}$

θ

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

"fat jet"

MET = 777 GeV

Jets_{inv.mass} = 82 GeV

CMS Experiment at LHC, CERN Data recorded: Tue Nov 3 01:34:28 2015 CET Run/Event: 260627 / 1739677912 Lumi section: 941

 $|\sum \text{Jet } \vec{p}_T| = 786 \text{ GeV}$

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

"fat jet"

Pruning

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

"fat jet"

Pruning

N-subjetiness

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

"fat jet"

... even with state of the art background estimation strategies, we are often overwhelmed by SM rescue: boosted topologies & substructure.

Higgs Production Modes

- Higgs Production modes will determine the signature.
 - ... and vector boson fusion!

CMS Experiment at LHC, CERN Data recorded: Tue Aug 16 13:20:56 2016 BST Run/Event: 278923 / 56352147 Lumi section: 66

VBF: Unique Observables

VBF dijet variables: m_{jj} , $\Delta \eta_{jj}$ show separation power

VBF Higgs Invisible

of two hard forward quarks

CMS-HIG-20-003 ATLAS-CONF-2020-008

Run: 357409 Event: 4893756438 2018-08-04 01:51:53 CEST

VBF Higgs Invisible + Photon

jj mass: 2700 GeV MET: 198 GeV mT: 193 GeV photon pT: 75 GeV

> jet photon

MET

VBF Higgs Invisible + Photon

Similar jet selection to traditional VBF search, with an **addition of low pT photon** (15 - 110 GeV) + centrality requirements on the photon.

Signal discrimination via deep neutral network training method optimizes for H→inv

- Data

Uncertainty

Strong $W+\gamma$

Strong $Z+\gamma$

EW $W+\gamma$

EW $Z+\gamma$

 $t\bar{t}\gamma/V\gamma\gamma$

γ+jet

 $e \rightarrow \gamma$

jet $\rightarrow \gamma$

--- $H(B_{inv} = 0.50)$

jet*→e*

ATLAS-CONF-2021-004

 $BR(H \rightarrow inv) < 37 \% (34\% exp)$

.0

Higgs Production Modes

Higgs to Invisible Branching Fraction Limits

ATLAS-CONF-2020-052

Current world **best BR(H->inv) < 11%** (11%) obs (exp) from ATLAS

Note: Only a partial combination, more channels to be added. Updated CMS result is also in preparation

CMS-HIG-20-003

Collider approach to Dark Matter

Strong experimental evidence for DM from astrophysical observations. Most studied class of theories predict DM to be a weakly interacting massive particle.

Higgs Portal

2HDM+a

Known Higgs decay branching fractions allow decays to invisible particles ~20%

λ

Higgs

All Higgs production modes can be studied to tag the event

two-Higgs double model + a pseudo-scalar, can end up with visible and invisible states

A more complete benchmark model with 14 parameters

2HDM+a Models

More complete benchmark model: ultra-violet complete and renormalizable Assumes SM Higgs boson is part of an **extended Higgs sector** with two complex Higgs doublets

14 independent parameters.. but reduce to 5 free parameters:

- the heavy Higgs mass $mA = mH = mH\pm$;
- the pseudoscalar mediator mass ma;
- the DM mass mχ;
- the mixing angle sin θ between the two CP-odd states a and A;
- and VEV ratio tan $\boldsymbol{\beta}$.

@ low tanβ the ggF mechanism dominates
@ higher tanβ the bbA mechanism dominates

Wide variety of detector signatures, DM in association with:

- a Higgs boson (pTmiss+h signatures)
- a Z boson (pTmiss+Z signatures).

states a and A; Matter 23%

2HDM+a

two-Higgs double model + a pseudo-scalar, can end up with visible and invisible states

A more complete benchmark model with 14 parameters

2HDM+a Models: Mono-Z(II)

Strategy: look for two leptons (e, μ) compatible with a Z-boson + require large p_T^{miss} . Veto on any additional activity.

WIMP: It all comes together: Mono-mania

ATL-PHYS-PUB-2021-006

2HDM+a Models: Mono-Z(II)

ATLAS-CONF-2021-029

CMS-EXO-19-003

Strategy: look for two leptons (e, μ) compatible with a Z-boson + require large p_T^{miss} . Veto on any additional activity.

Maximize the **sensitivity** in 2HDM+a parameter space by using the transverse mass observable.

> The dominant backgrounds: ZZ, WZ, WW, Z+jets and tt.

Estimated via control regions:

- eµ CR (tf and WW- enriched),
- three-lepton CR (WZ-enriched),
- four-lepton CR (ZZ-enriched).

2HDM+a Models: Mono-H(bb)

resolved

merged signal regions \bullet

The tf, W+HF and Z+HF contributions are **modeled using** simulations and normalization corrected from control region data

The analysis is split into: - Data ATLAS Preliminary SM Vh 800 √s = 13 TeV, 139 fb⁻¹ Diboson W+(bb,bc,cc,bl) Resolved: 0-lepton W+(cl,l) 700 2 *b*-tag Signal Region Single top Z+(bb,bc,cc,bl) ^š ∈[200, 350) GeV ET Z+(cl,l)

split further into 2 btagged jets and at least 3 b-tagged jets and in pTmiss bins.

ATLAS-CONF-2021-006

2HDM+a Models - Putting it all together

Long-lived signatures

1806.07396

Motivation	Top-down Theory IR LLP Scenario						
Naturalness	RPV SUSY GMSB mini-split SUSY Stealth SUSY Axinos Sgoldstinos UV theory Neutral Naturalness Composite Higgs Relaxion	BSM=/→LLLP (direct production of BSM state at LHC that is or decays to LLP) Hidden Valley confining sectors					
Dark Matter	Asymmetric DM Freeze-In DM SIMP/ELDER Co-Decay Co-Annihilation Dynamical DM	ALP EFT SM+S exotic Z					
Baryogenesis	WIMP Baryogenesis Exotic Baryon Oscillations Leptogenesis	decays exotic Higgs					
Neutrino Masses	Minimal RH Neutrino with U(1) _{B-L} Z' with SU(2) _R W _R long-lived scalars with Higgs portal from ERS depends on production mode Discrete Symmetries	HNL exotic Hadron decays					

gs

ron

29

Long-lived signatures

<u>1806.07396</u>

Motivation	Top-down Theory	IR LLP Scenario
Naturalness	RPV SUSY GMSB mini-split SUSY Stealth SUSY Axinos Sgoldstinos UV theory Neutral Naturalness Composite Higgs Relaxion	BSM=/→LLP (direct production of BSM state at LHC that is or decays to LLP) Hidden Valley confining sectors
Dark Matter	Asymmetric DM Freeze-In DM SIMP/ELDER Co-Decay Co-Annihilation Dynamical DM	ALP EFT SM+S exotic Z
Baryogenesis	WIMP Baryogenesis Exotic Baryon Oscillations Leptogenesis	decays exotic Higgs
Neutrino Masses	Minimal RH Neutrino with U(1) _{B-L} Z' with SU(2) _R W _R long-lived scalars with Higgs portal from ERS depends on production mode Discrete Symmetries	HNL decays exotic Hadr decays

Long-lived signatures and Exotic Higgs decays

Sufficient freedom for exotic couplings BR(H \rightarrow Non-SM) could be up to $\mathcal{O}(10)$ %

Long-lived signatures and Exotic Higgs decays

Sufficient freedom for exotic couplings BR(H \rightarrow Non-SM) could be up to $\mathcal{O}(10)$ %

If the decay product is **light**, and/or couple with **small couplings** \rightarrow **long lived particle**

Long-lived signatures and Exotic Higgs decays

Sufficient freedom for exotic couplings BR(H \rightarrow Non-SM) could be up to $\mathcal{O}(10)$ %

If the decay product is **light**, and/or couple with small couplings \rightarrow long lived particle

CMS & ATLAS is designed (mostly) for prompt decays, which makes LLP searches notoriously difficult!

Challenges in triggers, reconstruction and simulation. Backgrounds are generally from non-collision sources: electronic noise, material interactions satellite bunches, beam halo and cosmic

Strategy: Perform a very inclusive search for displaced leptons, without requiring a common vertex and look for eµ, ee, µµ final states where both leptons have large transverse impact parameter

<u>CMS-EXO-18-003</u>

Strategy: Reconstruct decays of LLPs in the muon detectors. No tracks, no jets. Instead clusters in the muon system! Using the muon system like a "sampling calorimeter"

@ATLAS: additional stand alone vertex finding in the ATLAS spectrometer

CMS triggers: MET based triggers (MET induced from an ISR jet requirement).

ATLAS triggers: dedicated muon region-of-interest trigger that is signature driven.

$ZH \rightarrow ZSS \rightarrow 2I4b$

Prompt dilepton (used to trigger) and displaced jet final state associated production is efficient to access low pT

Displaced jet tagging relying on tracks' IP, transverse angle, PV-association

Displaced dimuons with scouting

Precision Proton Spectrometer

TOTEM experiment is designed to take precise measurements of protons as they emerge from collisions at small angles.

This region is known as the 'forward' direction and is inaccessible

TOTEM and CMS collaborations have coordinated the use of their detectors to perform combined measurements

Precision Proton Spectrometer

CT-PPS is a magnetic spectrometer that uses the LHC magnets and detector stations, to bend protons to measure their trajectories. It is fully integrated into CMS DAQ + Reconstruction Software

Proton tag advantages:

- closure of event kinematics (full 13 TeV energy) reconstructed)
- effective background rejection

Opportunity to access a variety of topics:

- anomalous couplings with high sensitivity
- new resonances in very clean final state
- rare SM processes

Precision Proton Spectrometer

A search for new physics in central exclusive production using the missing mass technique with the CMS-TOTEM precision proton spectrometer <u>EXO-19-009</u>

Main variable of interest is the so-called **missing mass**: first use of this technique at the LHC.

 $m_{\rm miss}^2$

Excellent proton momentum reconstruction of PPS allows to search for missing mass signatures at high invariant mass

$$P_{p_1} = \left[(P_{p_1}^{\text{in}} + P_{p_2}^{\text{in}}) - (P_V + P_{p_1}^{\text{out}} + P_{p_2}^{\text{out}}) \right]^2$$

That was just looking at one question... We have many...

ATLAS Heavy Particle Searches* - 95% CL

Status: July 2022

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1]
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell\nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ \end{array}$ multi-channe 1 e, μ 1 e, μ 1 e, μ	$\begin{array}{c} 1-4 \ j \\ 2 \ j \\ \geq 3 \ j \\ 2 \ j / 1 \ J \\ \geq 1 \ b, \geq 1 \ J/2j \\ \geq 2 \ b, \geq 3 \ j \end{array}$	Yes – – – Yes Yes Yes	139 36.7 139 3.6 139 36.1 139 36.1 36.1 36.1	MD Ms Mth Gкк mass Gкк mass Gкк mass KK mass
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{SSM} W' \to v \\ \operatorname{HVT} W' \to WZ \to \ell\nu q \text{ model} \\ \operatorname{HVT} W' \to WZ \to \ell\nu \ell'\ell' \text{ model} \\ \operatorname{HVT} W' \to WH \to \ell\nu bb \text{ model} \\ \operatorname{HVT} Z' \to ZH \to \ell\ell/\nu\nu bb \text{ model} \\ \operatorname{HNT} Z' \to ZH \to \ell\ell/\nu\nu bb \text{ model} \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ B \ 1 \ e, \mu \\ e \ C \ 3 \ e, \mu \\ B \ 1 \ e, \mu \\ e \ B \ 0, 2 \ e, \mu \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 \ b \\ \geq 1 \ b, \geq 2 \ J \\ - \\ - \\ \geq 1 \ b, \geq 1 \ J \\ 2 \ j \ / \ 1 \ J \\ 2 \ j \ / \ 1 \ J \\ 2 \ j \ (VBF) \\ 1 - 2 \ b, \ 1 - 0 \ j \\ 1 - 2 \ b, \ 1 - 0 \ j \\ 1 \ J \end{array}$	- Yes Yes Yes Yes Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass W' mass Z' mass W' mass Z' mass
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	_ 2 e,μ 2 e 2μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ
DM	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM) Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ, τ, γ M) 0 e, μ multi-channe	1 – 4 j 1 – 4 j 2 b	Yes Yes Yes	139 139 139 139	m _{med} m _{med} m _{med}
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \ge 2 e, \mu, \ge 1 \tau 0 e, \mu, \ge 1 \tau 1 \tau$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 2 \ j \\ \geq 2 \ j, \geq 2 \ b \\ r \geq 1 \ j, \geq 1 \ b \\ 0 - 2 \ j, 2 \ b \\ 2 \ b \end{array} $	Yes Yes Yes - Yes Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ" mass LQ" mass LQ ¹ mass LQ ¹ mass LQ ² mass LQ ³ mass
Vector-like fermions	$ \begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ Y \rightarrow Wb \\ VLQ \ B \rightarrow Hb \\ VLL \ \tau' \rightarrow Z\tau/H\tau \end{array} $	$2e/2\mu/\geq 3e,\mu$ multi-channe $2(SS)/\geq 3e,\mu$ $1e,\mu$ $1e,\mu$ $0e,\mu$ multi-channe	$\begin{array}{l} \mu \geq 1 \ b, \geq 1 \ j \\ \mu \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 1 \ j, \geq 1 \ j \\ \geq 2b, \geq 1j, \geq 1 \ j \\ = 1 \ j \ j \ j \\ = 1 \ j \ j \ j \ j \ j \ j \ j \ j \ j \$	- Yes Yes J - Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass $T_{5/3}$ mass T mass Y mass B mass τ' mass

X_{5/3}tq, X_{5/3}→tW (RH) X_{5/3}tq, X_{5/3}→tW (LH) Btq, B→tW (RH) Bbq, B→tW (RH) Bba. B→tW (LH) Bbq, B→bH (LH) Bbg, B→bZ (LH) Btq, B→bZ (LH) Ttq, T→tZ (RH) Tbq, T→tZ (LH) Ttq, T→tH (RH) Tbq, T→tH (LH) Tbq, T→bW (LH) Y_{-4/3}bq, Y_{-4/3}→bW Qq, Q→qZ Qq, Q→qW

Overview (

	Overview (X→aa (bbbb, $M_a = 0.1 \text{ TeV}$, $M_X N/f = 8$)	M _X	B2G-20-003 (138 fb ⁻¹)		2.6		
	CMS Prelimina		YY→bWbW	M _Y	<u>1710.01539</u> (35.9 fb ⁻¹)	1.3			
$egin{array}{c} \sigma_{\chi_{5/3}} & \sigma_B $	1809.08597 (35.9 fb ⁻¹) 1802.01486 (35.9 fb ⁻¹) 1701.07409 (2.3 fb ⁻¹) 1701.07409 (2.3 fb ⁻¹)	Very heavy fermions	YY→bWbW TT→bWbW TT→tZtZ TT→tHtH TT (Singlet) TT (Doublet) BB→tWtW BB→bZbZ BB→bHbH BB (Singlet) BB (Doublet) X _{5/3} X _{5/3} →tWtW (Singlet) X _{5/3} X _{5/3} →tWtW (Doublet) X _{5/3} →tW (Singlet, $\Gamma/M_B=30\%$) T→tH (Singlet, $\Gamma/M_T=30\%$) T→tH (Singlet, $\Gamma/M_T=30\%$)	M _Y M _T M _T M _T M _B M _B M _B M _B M _B M _S M _X M _T M _X M _T	1710.01539 (55 % 6 ⁻¹) 1710.01539 (55 % 6 ⁻¹) 1805.04758 (35 % 6 ⁻¹) 1800.08858 (38 % 6 ⁻¹) 1810.03188 (35 % 6 ⁻¹) 1800.08878 (35 % 6 ⁻¹) 1900.04721 (35 % 6 ⁻¹) 1900.04721 (35 % 6 ⁻¹)	1.3 1.3 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.4 1.6 1.2 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3			
$\sigma_{ extsf{T}}$	<mark>1909.04721</mark> , <u>1708.01062</u> (35.9 fb ⁻		T→tZ (Singlet, Γ/M _T =10%) T→tZ (Singlet, Γ/M _T =30%)	$\frac{M_{\rm T}}{M_{\rm T}} \frac{1708.01062(35.9{\rm fb}^{-1})}{{\rm B2G}\cdot19\cdot004(138{\rm fb}^{-1})}$	$\frac{1708.01062}{B2G-19.004} (35.9 \text{fb}^{-1})$	1.4 1.4			
$\sigma_{ extsf{T}}$	B2G-19-004 (138 fb ⁻¹)		T→tZ (Doublet, $\Gamma/M_T=10\%$) B→bH (Doublet, $\Gamma/M_B=30\%$)	M _T M _B	$\frac{1708.01062}{1802.01486} (35.9 \text{ fb}^{-1})$	0.9			
σ_{T}	<u>1909.04721</u> (35.9 fb ⁻¹)		B→tW (Doublet, I /M _B =30%) Y 4/3→bW	M _B Mu	1809.08597 (35.9 fb ⁻¹)	1.7			
$\sigma_{ extsf{T}}$	<u>1909.04721</u> (35.9 fb ⁻¹)			ич _{4/3}					
$\sigma_{ extsf{T}}$	1701.08328 (2.3 fb ⁻¹)				0	1 2		Low	ver mass lim
$\sigma_{ m Y}$	1701.08328 (2.3 fb ⁻¹)					,	200		
$\sigma_{ m Q}$	1708.02510 (19.7 fb ⁻¹)		100						
$\sigma_{ m Q}$	1708.02510 (19.7 fb ⁻¹) 30,	60							
(0		100	20	0		300		400
				11	nnor d	TOSS S	oction	a limit	at 05%

Overview of CMS B2G Results

CMS Preliminary

W′→WZ (qq̄qq̄, HVT model B)

W′→WZ (vvqq, HVT model B)

W′→WZ (ℓvqq, HVT model B)

W′→WZ (ℓℓqq, HVT model B)

W'→WH (aabb, HVT model B)

 $W' \rightarrow WH (l v b \overline{b} HVT model B)$

 $W' \rightarrow WH$ (agt T HVT model B)

W' (all final states, HVT model B)

Z'→WW (gaga, HVT model B)

Z′→WW (ℓνqq, HVT model B)

Z′→ZH (qqbb, HVT model B)

Z'→ZH (qq̄ττ̄, HVT model B)

V′→VV (qāqā, HVT model B)

V'→VH (aabb, HVT model B)

V'→VH (qqττ, HVT model B)

V' (all final states, HVT model B)

Bulk G→WW (aaaa)

Bulk G→WW (ℓvqq

Bulk G→ZZ (ℓℓνν)

Bulk G→ZZ (ℓℓqq)

Bulk G→ZZ (ννqq)

Bulk G→VV (qq̄qq̄)

Bulk G→HH (bbbb) Bulk G→HH (ℓvqqbb, ℓvℓvbb)

 $Z'{\rightarrow} t\bar{t} \; (\Gamma/M_{Z'}{=}1\%)$

Z'→tt (Γ/M_{Z'}=10%)

Z'→tt (Γ/M_{Z'}=30%)

Z'→tT→(tZt, tHt)

W'→tb (1ℓ, RH)

W'→tb (0ℓ, RH)

W′→tb (0ℓ, LH)

LQLQ→tµtµ

LQ<u>LQ</u>→tτtτ

LQ<u>LO</u>→bvbv

t*t^{*}→tgtg

b^{*}→tW (0ℓ, LH)

b^{*}→tW (0ℓ, RH)

b^{*}→tW (0ℓ, LH+RH)

 $b^* \rightarrow tW (0\ell + 1\ell, LH)$

 $b^* \rightarrow tW (0\ell + 1\ell, RH)$

b^{*}→tW (0ℓ + 1ℓ, LH+RH)

Stealth $\tilde{a} \rightarrow \tilde{\chi}_{1}^{0} q \bar{q} (v + 2)$ ets. $M_{z0} = 0.2$ TeV)

W' \rightarrow Tb/Bt ($M_{VLQ} = 2/3M_{W'}$)

 $\mathsf{W}_{\mathsf{K}\mathsf{K}} \rightarrow \mathsf{R}\mathsf{W} \rightarrow \mathsf{W}\mathsf{W}\mathsf{W} \ (0\ell+1\ell)$

 $\mathsf{W}_{\mathsf{K}\mathsf{K}} {\rightarrow} \mathsf{R}\mathsf{W} {\rightarrow} \mathsf{W}\mathsf{W}\mathsf{W} \ (1\ell)$

G_{KK}→tt (Kaluza-Klein)

Bulk G (all final states)

Radion R→WW ($\ell \nu q \bar{q}$, $\Lambda = 3 \text{ TeV}$

Badion $B \rightarrow WW$ (gggg, $\Lambda = 3 \text{ TeV}$)

Radion R \rightarrow ZZ (vvqq, $\Lambda = 3$ TeV)

Radion R \rightarrow ZZ (gggg, $\Lambda = 3$ TeV)

Radion $R \rightarrow VV$ (qqqq, $\Lambda = 3 \text{ TeV}$)

Radion R \rightarrow HH (qq $\tau\tau$, Λ = 3 TeV)

Radion $R \rightarrow HH$ (bbbb, $\Lambda = 3 \, TeV$)

Radion R \rightarrow HH ($\ell \nu q q b b$, $\ell \nu \ell \nu b b$, $\Lambda = 3 \text{ TeV}$)

V'→VV + VH (gaga, gabb, HVT model B)

Z' (all final states, HVT model B)

Z′→ZH ((ℓℓ, vv)bb, HVT model B)

M_W B2G-20-009 (138 fb⁻¹) 4.4 4.0 $M_{W'}$ 2109.08268 (138 fb⁻¹) 3,9 $M_{W'}$ 2109.06055 (138 fb⁻¹) 2.7 M_W 1803.10093 (35.9 fb⁻¹) M_W B2G-20-009 (138 fb⁻¹) 4.0 M_W 2109.06055 (138 fb⁻¹) 4,0 M_W <u>1808.01365</u> (35.9 fb⁻¹) 2.6 M_W 1906.00057 (35.9 fb⁻¹ M_{Z'} <u>B2G-20-009</u> (138 fb⁻¹ 3.5 $M_{Z'} = \frac{2109.06055}{(138 \, \text{fb}^{-1})}$ 4.0 MZ' 2102.08198 (138 fb⁻¹) 3.7 3,9 M_{Z'} B2G-20-009 (138 fb⁻¹) 1.8 M_{Z'} 1808.01365 (35.9 fb⁻¹) 3.7 $M_{7'}$ <u>1906.00057</u> (35.9 fb⁻¹) 4.5 $M_{V'}$ <u>B2G-20-009</u> (138 fb⁻¹) 4.2 $M_{\rm M'}$ <u>B2G-20-009</u> (138 fb⁻¹) 2.8 $M_{M'}$ 1808.01365 (35.9 fb⁻¹) M_V B2G-20-009 (138 fb⁻¹) 4,8 $M_{V'}$ 1906.00057 (35.9 fb⁻¹) 4,5 M_G <u>B2G-20-009</u>(138 fb⁻¹) **1.3** $M_{\rm G} = \frac{2109.06055}{(138\,{\rm fb}^{-1})}$ 1.8 M_G 1711.04370 (35.9 fb⁻¹) **0.8** M_G 1803.10093 (35.9 fb⁻¹) 0.9 M_G 2109.08268 (138 fb⁻¹) **1.2** M_G <u>B2G-20-009</u> (138 fb⁻¹) **1.4** M_G <u>B2G-20-004</u> (138 fb⁻¹) **1.2** M_G 2112.03161 (138 fb⁻¹) **1.4** M_G 1906.00057 (35.9 fb⁻¹) **0.8** M_B 2109.06055 (138 fb⁻¹) 3.3 2,4 M_B B2G-20-009 (138 fb⁻¹) M_R 2109.08268 (138 fb⁻¹) 2.9 M_R B2G-20-009 (138 fb⁻¹) 1.8 2.7 M_R B2G-20-009 (138 fb⁻¹ 2.7 M_R 1808.01365 (35.9 fb⁻¹) M_R B2G-20-004 (138 fb⁻¹ 2.6 2.2 M_R 2112.03161 (138 fb⁻¹) M_{Z'} 1810.05905 (35.9 fb⁻¹) 3.8 5.2 M_{Z'} 1810.05905 (35.9 fb⁻¹) M_{Z'} 1810.05905 (35.9 fb⁻¹) M_{GKK} 1810.05905 (35.9 fb⁻¹) 4.5 2.3 M_{Z'} 1812.06489 (35.9 fb⁻¹) $M_{W'}$ 1708.08539 (35.9 fb⁻¹) 3,6 $M_{W'} = \frac{2104.04831}{(138 \, \text{fb}^{-1})}$ 3.4 3.4 M_{W'} 2104.04831 (138 fb⁻¹) 3,2 M_{W'} B2G-20-002 (138 fb⁻¹) 3.4 M_{Wкк} <u>В2G-20-001</u> (138 fb⁻¹) 3.7 M_{WKK} B2G-21-002 (138 fb⁻¹) M_{LO} 1809.05558 (35.9 fb⁻¹) MLO 1803.02864 (35.9 fb⁻¹) 0.9 MID 1809.05558 (35.9 fb⁻¹) 1.3 2,6 Mb* 2104.12853 (138 fb⁻¹) 2.8 Mb* 2104.12853 (138 fb⁻¹) Mb* 2104.12853 (138 fb⁻¹) 3.1 3,0 Mb* B2G-20-010 (138 fb⁻¹) *M*_b* <u>B2G-20-010</u> (138 fb⁻¹) 3.0 3.2 Mb+ B2G-20-010 (138 fb⁻¹) *M*_t* <u>1711.10949</u> (35.9 fb⁻¹) **1.2** 17

τ [ns]

1	
/)	1
	F Preliminary
	$\sqrt{s} = 13 \text{ TeV}$
	Reference
	2003.11956
/]	1907.10037
' I	1808.03057
	CERN-EP-2022-096
	2011.07812
	2011.07812
	2201.02472
	2205.06013
eV	1811.07370
V	2205.06013
v	1710.04901
V	ATLAS-CONF-2018-003
	2203.00587
	2203.01009
	2107.06092
	2206.12181
	2206.12181
	1808.03057
	1811.02542
v	1902.03094
v	1902.03094
eV	1902.03094
	2204.11988
	2204.11988
	2204.11988
	2204.11988
<u>ן</u>	
• •	

Some highlights with excesses from Run2

Search for W_R boson and a N: Strategy

The **dominant production** process for the **W**_R boson at the LHC is the **Drell-Yan mechanism Assuming**: no mixing between lepton flavors and left-right-handed weak gauge couplings are equivalent (gL = gR).

ATLAS Boosted Search with 80/fb https://arxiv.org/pdf/1904.12679.pdf

Search for W_R boson and a N: Results

A maximum-likelihood fit is performed on the mlljj (mlJ) distributions in the resolved (boosted) SRs and CRs, with the systematic uncertainties as nuisance parameters.

The most extreme **p-value** in the electron channel:

(mW_R,mN) = (6.0,0.8)TeV mass point corresponding to a local (global) significance of 2.95σ (2.78σ).

CMS-EXO-20-002

Detour: Bump hunt with an excess

Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state **B2G-20-009**

- Using 2 large cone jets (resonance decay products), and 2 small cone jets (VBF tags)
- Tag the jets with ML algorithms to distinguish from QCD

2 excesses in W decay modes only:

Local significant: 3.6 σ Global significance: 2.3 σ

Third-generation Leptoquark

discriminating variable: $S_{\rm T}^{\rm MET} = p_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + p_{\rm T}^{j} + {\rm MET}$

nonresonan

discriminating variable: $\boldsymbol{X} = e^{\Delta \eta}$

CMS-EXO-19-016

Heavy, long-lived, charged particles

Signature: high-pT track with anomalously high dE/dx in the pixel detector

Sensitive to: gluinos, charginos, and staus with m = 200-2500 GeV and $\tau > O(0.1$ ns)

Strategy:

- extract and parameterize relation between <dE/dx> and βγ using low- pileup runs
- compute $\langle dE/dx \rangle_{trunc}$; evaluate m = p/($\beta\gamma$)

Excess in the high dE/dx signal region at m>1 TeV. It is 3.3 sigma global for a particle mass hypothesis of 1.4 TeV

Timing of the 7 tracks responsible for an excess in the calorimeters and in the muon spectrometer but the time of flight was consistent with $\beta \sim 1$. Not LLP?

47

Careful with "Discoveries": Remember 750 GeV bump?

10-4

5x10²

 10^{3}

2×10³

Data Taking

Major ATLAS and CMS upgrades:

- Readout upgrades in all detectors.
- New timing detectors with LGAD silicons: 30-40 ps

• Tracker upgrade with larger pseudo rapidity coverage (also hardware level triggering)

Dark Higgs (WW)

DM particles acquire their mass through their interactions with a Dark Higgs boson.

Signal extraction: 3D ML fit to ΔR(II), mIl, mT(Imin + pT)

- DM mass: mχ,
- Z' mass: mZ',
- dark Higgs mass: ms,
- Z' couplings to quarks (gq)
- Z' couplings to DM (gχ),
- the mixing angle between SM and the dark Higgs bosons (sin θ).

