The NOvA Experiment

Mayly Sanchez Iowa State University / Argonne National Laboratory

> Fermilab User's Meeting June 12-13, 2012

NOvA in a nutshell

- Use the upgraded NuMI beam Fermilab.
- Construct a totally active liquid scintillator detector off the main axis of the beam.
 - Detector is 14 mrad offaxis and on the surface.
 - Location reduces background.
- If neutrinos oscillate, electron neutrinos are observed at the Far Detector in Ash River, 810 km away.

2nd generation ← long baseline →

Neutrino oscillations basics

- The flavor eigenstates are linear combinations of the mass eigenstates.
- There is a non-zero probability of detecting a different neutrino flavor than that produced at the source.

$$|v_{\alpha}\rangle = \sum_{k=1}^{n} U_{\alpha k} |v_{k}\rangle \quad (\alpha = e, \mu, \tau)$$
$$P(v_{\mu} \to v_{\tau}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27\Delta m_{23}^{2}L}{E_{\nu}}\right)$$

• For the three flavor case we can write a PMNS mixing matrix:

	1	0	0	$\left(\cos\theta_{13}\right)$	0	$\sin\theta_{13}e^{-i\delta}$	$\int \cos \theta_{12}$	$\sin \theta_{12}$	0
U =	0	$\cos\theta_{23}$	$\sin\theta_{23}$	0	1	0	$-\sin\theta_{12}$	$\cos \theta_{12}$	0
	0	$-\sin\theta_{23}$	$\cos\theta_{23}$	$\int -\sin\theta_{13}e^{i\delta}$	0	$\cos \theta_{13}$) 0	0	1)

- The (23) and (12) sectors are well known. The (13) sector only had a limit!
- If $sin^2 2\theta_{13}$ is non-zero then we can access δ_{CP} which might be key to matter anti-matter asymmetry of the universe.

NOvA physics goals

- Measure the oscillation probabilities of $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$.
 - Measure the mixing angle θ_{13} .
 - Determine neutrino mass hierarchy.
 - Study the phase parameter for CP violation δ_{CP} .
- Precision measurements of Δm^{2}_{32} , θ_{23} by measuring $\nu_{\mu} \rightarrow \nu_{\mu}$.
- As well as:
 - ν cross sections.
 - Sterile neutrinos.
 - Supernova signals.

The NOvA detectors

Neutrino events in NOvA

Excellent spatial granularity for a

 $\frac{1}{2} \frac{1}{2} \frac{1}$

NOvA construction status

- Far Detector site construction is now complete.
 - The block pivoter is installed at the site.
 - Far Detector first block installation begins this month!
- Upgrade NuMI beam from 350 kW to 700kW initiated May 1, 2012.
- Near Detector cavern excavation and assembly during shutdown.
 - Changed to 96 x 96 cell design to improve event containment.

NOvA construction status

- Far Detector site construction is now complete.
 - The block pivoter is installed at the site.
 - Far Detector first block installation begins this month!
- Upgrade NuMI beam from 350 kW to 700kW initiated May 1, 2012.
- Near Detector cavern excavation and assembly during shutdown.
 - Changed to 96 x 96 cell design to improve event containment.

NOvA Near Detector Prototype

- Near Detector Prototype installed on surface at Fermilab.
- 5000 neutrino events from the NuMI beam observed.
- Neutrino candidate data matches well to Monte Carlo.

The status of θ_{13} before Neutrino 2012

This year we will go from not knowing this parameter at all to having measured it down to 8%.

> 90% C.L. allowed ranges and best fit values (assuming Δm²>0, δ=0, θ₂₃=45°) CHOOZ T2K 2011 MINOS 2011 Double Chooz 2011 Daya Bay 2012 RENO 2012

> > combined (dashed:

0.20

0.25

.30

()

Normal Hierarchy

0.15

 $sin^2(2\theta_{13})$

0.10

0.05

R. Patterson

The status of θ_{13} before Neutrino 2012

This year we will go from not knowing this parameter at all to having measured it down to 8%.

M. Sanchez - ISU/ANL

Mild preference for inverted hierarchy. About ~1 σ .

Searching for... Electron neutrino appearance in NOvA

 $A \equiv$

The probability of v_e appearance in a v_{μ} beam:

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}} \qquad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E}$$
$$+2\alpha \sin \theta_{13} \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \cos \Delta$$
$$-2\alpha \sin \theta_{13} \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin \Delta$$

- Searching for v_e events in NOvA, we can access sin²(20₁₃).
- Probability depends not only on θ₁₃ but also on δ_{CP} which might be the key to matter anti-matter asymmetry of the universe. For large θ₁₃, a measurement could be possible.
- Probability is enhanced or suppressed due to **matter effects** which depend on the mass hierarchy i.e. the sign of $\Delta m^2_{31} \sim \Delta m^2_{32}$ as well as neutrino vs anti-neutrino running.

M. Sanchez - ISU/ANL

Electron neutrino appearance in NOvA

The probability of v_e appearance in a v_{μ} beam:

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}} \qquad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E}$$
$$+ 2\alpha \sin \theta_{13} \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \cos \Delta$$
$$- 2\alpha \sin \theta_{13} \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin \Delta$$

M. Sanchez - ISU/ANL

Appearance Probability

12

 $G_f n_e L$

 $A \equiv$

NOvA exposure in early running

- NOvA will turn on April 2013 with 5 kton of Far detector in place and beam operating at ~ 400 kW
- We will add detector mass at a rate of ~ 1 kton/month
- Beam intensity will ramp up to 700 kW in approximately 6 months from 400 kW.

NOvA early reach

- We will start with neutrino running:
 - 5σ observation of
 ν_µ → ν_e in first year if
 normal hierarchy (even
 with partial detector and
 beam commissioning!)
 - Switch to anti-neutrino running as needed.
- Nominal run plan 3 years in each mode at 6 x 10²⁰ POT.

Using earlier analysis methods optimized for $\sin^2(2\theta_{13}) = 0.095$. Signal eff: 45% and NC fake rate 0.1%.

M. Sanchez - ISU/ANL

NOvA physics

NOVA will measure: $P(\nu_{\mu} \rightarrow \nu_{e})$ at 2 GeV and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ at 2 GeV

Now we know $\theta_{13} \sim 9$ degrees

M. Sanchez - ISU/ANL

NOvA physics

NOVA will measure: $P(\nu_{\mu} \rightarrow \nu_{e})$ at 2 GeV and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ at 2 GeV

Large θ_{13} is good news for NOvA. It reduces the overlap between these bi-probability ellipses, reducing the likelihood of degeneracies. 16

M. Sanchez - ISU/ANL

NOvA physics

Example NO ν A result...

Our data will yield allowed regions in $P(\overline{v}_e)$ vs. $P(v_e)$ space

(3 yr + 3 yr possibility shown)

• A measurement of the probabilities might allow resolving the mass hierarchy and provide information on δ_{CP} .

M. Sanchez - ISU/ANL

Resolution of the mass hierarchy

- Significance of mass hierarchy resolution using a sample counting experiment.
- Energy fit provides
 improvement on the fully degenerate δ_{CP} values.

 We can also gain additional sensitivity from T2K's baseline.

Resolution of the mass hierarchy

- Significance of mass hierarchy resolution using a sample counting experiment.
- Energy fit provides
 improvement on the fully degenerate δ_{CP} values.

 We can also gain additional sensitivity from T2K's baseline.

NOvA muon neutrino disappearance

 NOvA's will do a few % measurement in Δm²₃₂ and sin²2θ₂₃.

 Improvement of one order of magnitude in sin²2θ₂₃.
 It might not be maximal.

Non-maximal $sin^2 2\theta_{23}$

- If $\sin^2(2\theta_{23})$ is not maximal there is an ambiguity as to whether θ_{23} is larger or smaller than 45°.
- The sin²(θ₂₃) term is unimportant when comparing accelerator experiments; however, it is crucial in comparing accelerator to reactor experiments

Non-maximal $sin^2 2\theta_{23}$

- If $\sin^2(2\theta_{23})$ is not maximal there is an ambiguity as to whether θ_{23} is larger or smaller than 45°.
- The sin²(θ₂₃) term is unimportant when comparing accelerator experiments; however, it is crucial in comparing accelerator to reactor experiments

Non-maximal $sin^2 2\theta_{23}$ and NOvA

 Expected contours for one example scenario using 3 years of data for each neutrino mode.

Simultaneous <u>hierarchy</u>, <u>CP phase</u>, and θ_{23} octant information from NOvA

- Just a few months ago, the last unmeasured neutrino mixing angle, θ₁₃, was around the corner.
 - There is now definite evidence that this angle is as large as we could have hoped for.
- The determination of the mass hierarchy, CP violation and the θ₂₃ quadrant are the next challenges.
 - NOvA is set to play an important role in solving these.
- NOvA Far Detector assembly and NuMI upgrade are now underway.
 - Expect first neutrino events in the partial detector next spring.
 - Near Detector on the surface has provided commissioning, cosmic ray and neutrino data.
 - Actively developing analyses for first Far Detector neutrino data.

NOvA Talks at New Perspectives tomorrow

T. KutninkStatus of the NOvA Near Detector PrototypeM. BetancourtStatus of Quasi-elastic studies in the NOvA Near Detector Prototype

Backup

NOvA construction schedule

- NOvA will turn on April 2013 with 5 kton of Far detector in place and beam operating at ~ 400 kW
- We will add detector mass at a rate of ~ 1 kton/month
- Beam intensity will ramp up to 700 kW in approximately 6 months

NOvA Near Detector Prototype

Plenty of cosmic ray data as detector is on surface

- Developing commissioning and calibration techniques:
 - Cosmic rate per number of active channels and light level as a function of of time.
 - Position dependence of cell response (light attenuation) and Michel electrons.

M. Sanchez - ISU/ANL

Non-maximal $sin^2 2\theta_{23}$ and NOvA

 Expected contours for one example scenario using 3 years of data for each neutrino mode.

In "degenerate" cases, hierarchy and δ information is coupled. However θ_{23} octant information might not.

