## SciBooNE/MiniBooNE

### Ž. Pavlović Los Alamos National Laboratory

Fermilab Users' Meeting, 2012

# Outline

- Booster Neutrino Beamline
- SciBooNE & MiniBooNE experiments
- New results
  - MB Updated neutrino appearance analysis
  - MB Antineutrino appearance analysis
  - MB Joint Neutrino & Antineutrino appearance analysis
  - Joint SciBooNE/MiniBooNE numubar disappearance analysis
- Future prospects

## **Booster Neutrino Beam**



- Horn focused beam/8GeV protons from Booster
- Horn polarity  $\rightarrow$  neutrino or antineutrino mode



# SciBooNE





#### **Physics goals:**

- Precise measurements of  $\nu$  and  $\overline{\nu}$  cross sections
  - Non quasi-elastic interactions
- Near detector for MiniBooNE oscillation analysis

- SciBar
  - Scintillator tracking detector (15 tons)
  - Neutrino target
- Electron Catcher (EC)
- Muon Range Detector (MRD)



# SciBooNE



- Jun. 2007 -Aug. 2008
- 95% data efficiency
- 2.52x10<sup>20</sup> POT in total
- neutrino : 0.99x10<sup>20</sup> POT
- antineutrino: 1.53x10<sup>20</sup> POT



- SciBar
  - Scintillator tracking detector (15 tons)
  - Neutrino target
- Electron Catcher (EC)
- Muon Range Detector (MRD)





## MiniBooNE



- 800t mineral oil Cherenkov detector
- 1520 PMTs in inner/outer region

### **Physics goals:**

- Neutrino and antineutrino oscillations at Δm<sup>2</sup>~1eV<sup>2</sup> (motivated by LSND experiment)
- Cross sections



## MiniBooNE



- 800t mineral oil Cherenkov detector
- 1520 PMTs in inner/outer region

- Data taking: 2002-2012
- Total POT 19.8x10<sup>20</sup>
- Neutrino: 6.5x10<sup>20</sup>
- Antineutrino: 11.3x10<sup>20</sup>



## 10 years of running

- Detector and beam extremely stable
- Neutrino/POT within 2%

/POT × 10 -17

160

140

120

100

80

60

40

20

0

01/Jan/04

Detector calibration stable at 1% level



## Events in MB



- Identify events using timing and hit topology
- Use primarily Cherenkov light



## MiniBooNE appearance analysis:

Neutrino mode update
 New Antineutrino results
 Combined neutrino and antineutrino mode

### What's new since last oscillation publication?

Events

- In situ measurement of WS contamination in anti-v beam
  - $v_{\mu}$  CCQE angular fit, and new constrain from CC $\pi$ + rate...good agreement with expectation



New SciBooNE constraint on intrinsic ν<sub>e</sub> from K+

- Found K+ production to be  $0.85 \pm 0.12$  relative to prediction, consistent with prior MiniBooNE assessment of  $1.00 \pm 0.30$
- Combined with world K+ production data, reduces error on K+ flux to 9% in MB En range
- Leading error on K+ bkgs becomes ~20% error from cross-section





SciBar 2-Track

### What's new since last oscillation publication?

- Few other minor updates...
  - Higher stats for all MC samples, reduces fluctuations in error matrices
  - Added error matrix for intrinsic ve from K-
  - Improved smoothing algorithm that was being used to assess systematics due to discriminator thresholds and PMT response
  - CC $\pi$ + events (bkg for  $v_{\mu}$  CCQE when  $\pi$ + is absorbed) Q<sup>2</sup> reweighting applied based on internal MB measurement





 $10^{-1}$  $sin^2 2\theta$ 

### What can we say about low-E excess



- Not a stat fluctuation, statistically  $6\sigma$
- Unlikely to be intrinsic  $v_e$ , small bkg at low E
- NC  $\pi^{0}$  background dominates
  - Reduces significance to 3σ
  - Heavily constrained by NC  $\pi^0$  in situ measurement
  - Region where single  $\gamma$  can contribute
- $\nearrow$  MB ties  $\Delta \rightarrow N\gamma$  expected rate to be 1% of measured NC  $\pi^{o}$  rate
  - Number of theory calculations for various single γ processes
  - All find total cross section within 20% of MB  ${\sim}5x10^{\text{-42}}\,\text{cm}^2/\text{N}$
  - Would need nearly 300% change

R. Hill, arxiv:0905.0291 Jenkins & Goldman, arxiv:0906.0984 Serot & Zhang, arxiv:1011.5913



sin²20

## L/E dependence

- Model independent look at the data
- The excess as a function of L/E in MiniBooNE neutrino, antineutrino and LSND data consistent



### Combined v and $\overline{v}$ analysis

- Consistent treatment of WS
- Full correlated systematic error matrix
- Excess (200-1250): 240±34.5±52.6 (3.8σ)
- Best Fit preferred over null at  $3.6\sigma$

| combined            | E > 200 MeV | E > 475 MeV |
|---------------------|-------------|-------------|
| χ²(null)            | 42.53       | 12.87       |
| Prob(null)          | 0.1%        | 35.8%       |
| χ <sup>2</sup> (bf) | 24.72       | 10.67       |
| Prob(bf)            | 6.7%        | 35.8%       |





17



# Joint SciBooNE & MiniBooNE disappearance analysis

## $\bar{\nu}_{\mu}$ disappearance

- 3+N sterile neutrino models require some disappearance of v<sub>e</sub>s and/or v<sub>u</sub>s
- Data:
  - POT for MiniBooNE:  $10.1 \times 10^{20}$
  - POT for SciBooNE:  $1.53 \times 10^{20}$

SciBooNE Reconstructed Energy Distribution

Reconstructed Energy Distribution



# Combined disappearance result

- Joint analysis:
- Compatible with no oscillations
- BF point  $\Delta m^2 = 5.9 \text{ eV}^2$ , sin<sup>2</sup>2 $\theta = 0.086$
- $\chi^2 = 40.0$  (probability 47.1%) at the best fit point
- $\chi^2 = 43.5$  (probability 41.2%) for the null hypothesis
- Probabilities are based on fake data studies



## **Future Prospects**

## Upcoming results - SciBooNE

- CCQE cross section
- $v/\overline{v}$  CC coherent pion production
- Neutral current elastic scattering
- CC1pi0



22

## Upcoming results - MiniBooNE

- v NC elastic
  - 44k events (40 % purity)
  - world record  $\nu$  NC elastic sample
- v CC inclusive
  - 344k events (96% purity)
- $\nu_{\mu}$  CCQE
  - 77k events
  - 10x more stats then all older samples combined









#### R. Dharmapalan

## Upcoming results - MiniBooNE

10-2

**Oscillation Probability** 

- Fits to more complicated oscillations models (3+2 model)
  - CP violation





- SB & MB continue producing important neutrino cross section and oscillation results – more results later this year
- MiniBooNE observes an excess of 240±34.5±52.6 (3.8σ) events in electron neutrino sample with combined neutrino and antineutrino data
- No  $\overline{\nu_{\mu}}$  disappearance observed in joint SciBooNE/MiniBooNE disappearance analysis
- MiniBooNE considering merits of future running
  - Running under various configurations
  - Double neutrino mode POT running along MicroBooNE

## Backup

## BNB





## SciBooNE Collaboration

## ~65 physicists, 5 countries, 18 institutions





Universitat Autonoma de Barcelona University of Colorado, Boulder Columbia University Fermi National Accelerator Laboratory High Energy Accelerator Research Organization (KEK) Imperial College London Indiana University Institute for Cosmic Ray Research (ICRR) **Kyoto University** Los Alamos National Laboratory Louisiana State University Massachusetts Institute of Technology **Purdue University Calumet** Università di Roma "La Sapienza" and INFN Saint Mary's University of Minnesota Tokyo Institute of Technology Universidad de Valencia

<u>Spokespersons</u>: M.O. Wascko (Imperial), T. Nakaya (Kyðto)



## Students

- Graduated
  - 8 PhD
     (Barcelona, Columbia, Rome, 3
     Kyoto, Tokyo Tech, Imperial)
  - 3 Masters (Rome, Imperial College, Valencia)
- Active
   3 PhD



SciBooNE Masters & other student

## SciBooNE detector

2m

### SciBar

4m

- scintillator tracking detector
  14,336 scintillator bars (15 tons)
- Neutrino target
- detect all charged particles
- p/π separation using dE/dx

Used in K2K experiment

### Muon Range Detector (MRD)

12 2"-thick steel
+ scintillator planes
measure muon momentum with range up to 1.2 GeV/c

Parts recycled from past experiments

### Electron Catcher (EC)

Used in CHORUS, HARP and K2K

spaghetti calorimeter
 2 planes (11 X<sub>0</sub>)
 identify π<sup>0</sup> and ν<sub>e</sub>

## SciBooNE publications

- NuMu disappearance Phys. Rev. D 85, 032007 (2012)
- Measurement of K+ production cross section Phys.Rev.D 84 012009 (2011)
- CC inclusive cross section Phys.Rev.D 83 012005 (2011)
- Coherent NCpi0 production Phys.Rev.D 81 111102(R) (2010)
- Inclusive NCpi0 production Phys.Rev.D 81 03304 (2010)
- Coherent CCpi+ production Phys.Rev.D 78 112004 (2008)





## **MiniBooNE** Collaboration



A. A. Aguilar-Arevalo<sup>12</sup>, C. E. Anderson<sup>15</sup>, S. J. Brice<sup>6</sup>, B. C. Brown<sup>6</sup>, L. Bugel<sup>11</sup>, J. M. Conrad<sup>11</sup>, Z. Djurcic<sup>2</sup>,
B. T. Fleming<sup>15</sup>, R. Ford<sup>6</sup>, F. G. Garcia<sup>6</sup>, G. T. Garvey<sup>9</sup>, J. Mirabal<sup>9</sup>, J. Grange<sup>7</sup>, J. A. Green<sup>8,9</sup>, R. Imlay<sup>10</sup>, R. A. Johnson<sup>3</sup>, G. Karagiorgi<sup>11</sup>, T. Katori<sup>8,11</sup>, T. Kobilarcik<sup>6</sup>, S. K. Linden<sup>15</sup>, W. C. Louis<sup>9</sup>, K. B. M. Mahn<sup>5</sup>,
W. Marsh<sup>6</sup>, C. Mauger<sup>9</sup>, W. Metcalf<sup>10</sup>, G. B. Mills<sup>9</sup>, C. D. Moore<sup>6</sup>, J. Mousseau<sup>7</sup>, R. H. Nelson<sup>4</sup>, V. Nguyen<sup>11</sup>,
P. Nienaber<sup>14</sup>, J. A. Nowak<sup>10</sup>, B. Osmanov<sup>7</sup>, Z. Pavlovic<sup>9</sup>, D. Perevalov<sup>1</sup>, C. C. Polly<sup>6</sup>, H. Ray<sup>7</sup>, B. P. Roe<sup>13</sup>,
A. D. Russell<sup>6</sup>, M. H. Shaevitz<sup>5</sup>, M. Sorel<sup>5\*</sup>, J. Spitz<sup>15</sup>, I. Stancu<sup>1</sup>, R. J. Stefanski<sup>6</sup>, R. Tayloe<sup>8</sup>, M. Tzanov<sup>4</sup>,
R. G. Van de Water<sup>9</sup>, M. O. Wascko<sup>10†</sup>, D. H. White<sup>9</sup>, M. J. Wilking<sup>4</sup>, G. P. Zeller<sup>6</sup>, E. D. Zimmerman<sup>4</sup>

(The MiniBooNE Collaboration)

### Account for neutrino low-E events

- Fits on prior page assume only anti-neutrinos are oscillating, but we know there is a low E excess in nu mode data
- Simplest scaling is to assume that there should be an excess in the low energy region proportional to the WS content (21 events)

