

QCD & Electroweak Results from the Tevatron

Breese Quinn University of Mississippi On behalf of the CDF and DØ Collaborations

45th Annual Fermilab Users' Meeting June 12, 2012

Vector Bosons + Jets, Diphotons

- Stringent tests of pQCD
- Sensitive to quark, gluon content of proton – constrain PDFs
- Irreducible backgrounds to many searches
- Inclusive jet production
 - + Extract α_s

◆ Elastic pp → pp scattering
 ◆ Proton structure

Compton scatt. $(E_T^{\gamma} \le 70 \text{ GeV})$ $q\overline{q}$ annih. $(E_T^{\gamma} \ge 70 \text{ GeV})$

- Sensitive to b, c, g content for PDFs
- Measure jet fractions via template method in 8 bins of E_T^{γ}
- ← Calculate cross sections covering $30 < E_T^{\gamma} < 300 \text{ GeV}, |y^{\gamma}| < 1.0$ $E_T^{jet} > 20 \text{ GeV}, |y^{jet}| < 1.5$

$\gamma + b/c + X: CDF$

	Measured	NLO	PYTHIA
$\sigma(p\overline{p} \to \gamma + b + X)$	$19.7 \pm 0.7^{stat} \pm 5.0^{syst}$	27 . $3^{+2.3}_{-1.5}$	17.0
$\sigma(p\overline{p}\to\gamma+c+X)$	$132.2 \pm 4.6^{stat} \pm 19.2^{syst}$	152 . 6 ^{+12.2} _{-9.6}	101.3

• Modeling deficiencies at high E_T^{γ}

CDF Note 10818

Higher order corrections; mis-modeled gluon splitting (e.g. improved with increased g splitting to HF q in PYTHIA)

B. Quinn University of Mississippi

$\gamma + b/c + X : CDF$

	Measured	NLO	PYTHIA
$\sigma(p\overline{p} \rightarrow \gamma + b + X)$	$19.7 \pm 0.7^{stat} \pm 5.0^{syst}$	27 . $3^{+2.3}_{-1.5}$	17.0
$\sigma(p\overline{p}\to\gamma+c+X)$	132. $2 \pm 4.6^{stat} \pm 19.2^{syst}$	152.6 ^{+12.2}	101.3

• Modeling deficiencies at high E_T^{γ}

CDF Note 10818

Higher order corrections; mis-modeled gluon splitting (e.g. improved with increased g splitting to HF q in PYTHIA)

B. Quinn University of Mississippi

$\gamma + b + X : DO$

• Diff. cross sections as a function of p_T^{γ} measured for central photons (30 < p_T^{γ} < 300 GeV, $|y^{\gamma}| < 1.0$) & forward photons (30 < $p_T^{\gamma} < 200$ GeV, 1.5 < $|y^{\gamma}| < 2.5$)

B. Quinn University of Mississippi Users' Meeting 2012 June 12, 2012 6

 p_{-}^{γ} (GeV)

Z + b : CDF

- Fundamental background to $ZH \rightarrow Zb\overline{b}$, SUSY *b* partners
- Sensitive to b quark PDF
 (important for EW single t prod)
- ANN key improvement over 2 fb⁻¹ result (acceptance improves 40%)
- Uncertainties reduced using ratios

b

g		NLO with MCFM	
	Measured	$Q^2 = m_Z^2 + p_{T,Z}^2$	$Q^2 = \langle p_{T,jet}^2 angle$
$\frac{\sigma_{Z_bjet}}{\sigma_Z}$	$0.261 \pm 0.023^{stat} \pm 0.023^{syst}\%$	0.23%	0.29%
$\left \frac{\sigma_{Z_bjet}}{\sigma_{Zjet}} \right $	2.08 \pm 0.18 ^{stat} \pm 0.27 ^{syst} %	1.8%	2.2%

B. Quinn University of Mississippi

Z + b : CDF

- Differential cross section as function of jet p_T and /y/
- Normalized to inclusive Z cross section
- 25% scale uncert. for NLO MCFM

CDF Note 10594

B. Quinn University of Mississippi

Users' Meeting 2012 June 12, 2012

Inclusive W + jets : DØ

- Dominant background to t and $t\bar{t}$ production, SM Higgs, etc.
- Precision measurements critical for enhancing ability to identify new physics
- New measurements of differential cross sections as functions of jet rapidity, dijet invariant mass, and W transverse momentum
 - Follows up previous results on total cross section and differential with respect to p_T^{jet}

Good agreement with each theory approach

B. Quinn University of Mississippi

Inclusive W + jets : DØ

- Central region described well by theory, with low uncertainty
- In forward regions where low p_T jets dominate, theory overestimates cross section
- Many analyses quite sensitive to jet rapidity modeling

B. Quinn University of Mississippi

Inclusive Z + jets : CDF

- Main background for ZH, SUSY in MET+jets, etc.
- Includes $Z \to e^+e^-$ and $Z \to \mu^+\mu^-$ events
- Extensive analysis of differential cross sections as functions of several variables, over different jet multiplicities, with comparisons to many theoretical frameworks
- Cross section as a function of jet multiplicity
 - Shows improved performance of NLO BLACKHAT+SHERPA calculation over LO only

Inclusive Z + jets : CDF

NNLO contributions expected to be greater for some distributions such as H_T

- ✤ LOOPSIM "nNLO" addition clearly describes data better at high H_T
- Dozens more distributions on <u>public webpage</u>

B. Quinn University of Mississippi

- ← Prompt photon pairs represent large irreducible background to low mass $H \rightarrow \gamma \gamma$, searches for heavy resonances, extra spatial dimensions, etc.
- Tool to check pQCD soft gluon resummation techniques
 - Particularly effective because prompt photons do not interact with other FS particles, and are well-measured by EM calorimeters
- Can come from

annihilation

leading order, dominant at high mass

gluon fusion

important at low mass

fragmentation

suppressed by photon isolation

B. Quinn University of Mississippi

- Prompt photon pairs represent large irreducible background to low mass $H \rightarrow \gamma \gamma$, searches for heavy resonances, extra spatial dimensions, etc.
- Tool to check pQCD soft gluon resummation techniques
 - Particularly effective because prompt photons do not interact with other FS particles, and are well-measured by EM calorimeters

Total Cross Section (pb)			
Data	12.28 \pm 0.15 ^{stat} \pm 3.52 ^{syst}		
Diphox: NLO prompt, NLO frag	10.6 ± 0.5		
MCFM: NLO prompt, LO frag	11.6 ± 0.3		
ResBos: anal. resummed low pt to NLO high pt	11.3 ± 2.5		
Sherpa: LO shower, improved hard-soft match	10.9		
Pythia: LO shower	9.19		
NNLO	11.8 + 1.7 - 1.6		

Diphotons : CDF

RESBOS – good at low p_T where resummation important, poor in regions of strong fragmentation (low mass, low $\Delta \phi$) **NNLO** – best overall agreement with data including 20-50 GeV

fragmentation "shoulder

♣

CDF Note 10160

B. Quinn University of Mississippi

Elastic Scattering : DØ

Scattered protons

Separato

23 m

Quadrupole Magnets

- Measure $\frac{d\sigma}{dt}(p\overline{p} \rightarrow p\overline{p})$, t = 4-mom²
- Investigate proton structure, constrain soft diffractive models

Scattered antiprotons

Separator

23 m

31 m

Performed in a dedicated run using forward proton detectors

Two expected features observed

- |t| position of the local minimum where the logarithmic slope changes is reduced at higher center of mass energy (compare to UA4)
- Local minimum is less pronounced for $p\bar{p}$ than for pp (e.g. TOTEM result)

0 m

Quadrupole Magnets

PRD, submitted 6/5//12 arXiv:1206.0687

B. Quinn University of Mississippi

B. Ouinn

University of Mississippi

α_{S} Extraction : DØ

- Running of α_S has only been tested up to momentum transfer scale Q = 208 GeV. At higher scales, modified by ESD
- α_S depends on renormalization scale renormalization group equation relates $\alpha_S(Q_0)$ at one scale to $\alpha_S(Q)$ at another, but does not give value of α_S
- Previous α_S extractions at high Q, used
 Q (GeV)
 inclusive jet cross sections. PDFs involved use RGE to run α_S to high scales not an independent test!
 - Cross section ratios reduce, but do not eliminate PDF dependence
- New "angular correlation of jets" variable

$$R_{\Delta R} = \frac{\# neighboring jets}{\# inclusive jets}$$

 $R_{\Lambda R}$

2/3

α_{S} Extraction : DØ

B. Quinn University of Mississippi

Electroweak Physics

Clean signatures

- Isolated lepton(s) { W(Z) }
- $\Rightarrow \text{ Missing } E_T \{W\}$
- Little recoil/underlying evt
- Well-understood physics

- Calibrating detectors
 Precision SM measurements
- Deviations from SM
 Backgrounds to and "proof-of-principle" for Higgs searches

B. Quinn University of Mississippi

- Measurement of $d\sigma/dP_T$ in $p\overline{p} \rightarrow Z/\gamma^* + X \rightarrow e^+e^- + X$
 - ← 66 GeV < M_{ee} < 116 Gev
 - All boson rapidity and decay electron phase space

Total σ integrated over all bins (pb)

 $257.1 \pm 0.7^{stat} + 2.6^{syst} + 2.6^{lumi}$

• Test of higher order QCD corrections – lowest order predicts no P_T in Z/γ^* production

CDF Note 10699

B. Quinn	
University of Mississip	opi

- DØ produced a σ(WW+WZ) measurement using Wjj final state events
- Uses a Random Forest MVA to extract the signal
- Assume SM σ(WW)/σ(WZ) when fitting RF output for σ(WV)
- Then fit σ(WW) and σ(WZ)
 simultaneously, allowing both to float
- Cross check with fit to M_{jj}

 σ (pb)ObservedSMWV19.6 $^{+3.2}_{-3.0}$ WW15.9 $^{+3.7}_{-3.2}$ 11.7 \pm 0.8WZ3.3 $^{+4.1}_{-3.3}$ 3.5 \pm 0.3

B. Quinn University of Mississippi

- ◆ Look at leptonic final states: WZ→lvll, ZZ→llvv
- Looser requirements than previous analyses to maximize yields

W Mass: Motivation

SM prediction of the W mass

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

Prior to February 2012...

Higgs most sensitive to W mass for
equal Higgs mass constraint
 $\Delta m_W \sim 0.006 \Delta m_t$

- ▲ Transverse momentum carries mass information in W→lv events. Examine three kinematic distributions
 - Transverse mass:

$$T = \sqrt{p_T^l \not\!\!E_T (1 - \cos \Delta \phi)}$$

+ Lepton transverse momentum: p_T^l

m

- Missing transverse energy: $\not\!\!\!E_T$
- Use a parameterized fast MC detector simulation to generate templates to compare with data
- Calibrate fast MC with data
 - Verify with the Z mass peak
- Binned likelihood fit of data to templates to extract W mass
- Combine result from the different distributions since they are not completely correlated

W Mass: Different Tactics

CDF and D0 employ very different methods, in order to capitalize on strength of their unique detectors

- Central tracking provides very good + EM calorimeter provides very good lepton momentum measurement
 - Muon resolution = 3.2% (at $p_T = 45 \text{ GeV}$)
- Use $W \rightarrow e \upsilon$ and $W \rightarrow \mu \upsilon$ events
- **Detailed tracker model**
- Momentum scale calibration focus
 - + Using $J/\psi \rightarrow \mu\mu$, $\Upsilon \rightarrow \mu\mu$, $Z \rightarrow \mu\mu$

B. Ouinn University of Mississippi

- electron energy measurement
 - Energy resolution = 3.3% (at E = 45 GeV)
- Use $W \rightarrow ev$ events

 \leftarrow Using $Z \rightarrow ee$

- **Detailed calorimeter model**
- **Energy scale calibration focus** ۰

W Mass: Different Tactics

CDF and DØ employ very different methods, in order to capitalize on strength of their unique detectors

- Central Tracking Calorimeter Muon racking Trigger Toroid SOUTH System Detector ----E de Low Beta Quad. Electronics
- **Central tracking provides very good + EM calorimeter provides very good** lepton momentum measurement
 - Muon resolution = 3.2% (at $p_T = 45 \text{ GeV}$)
- Use $W \rightarrow e \upsilon$ and $W \rightarrow \mu \upsilon$ events
- **Detailed tracker model**
- Momentum scale calibration focus
 - + Using $J/\psi \rightarrow \mu\mu$, $\Upsilon \rightarrow \mu\mu$, $Z \rightarrow \mu\mu$

B. Ouinn University of Mississippi

- electron energy measurement
 - Energy resolution = 3.3% (at E = 45 GeV)
- Use $W \rightarrow ev$ events

 \leftarrow Using $Z \rightarrow ee$

- **Detailed calorimeter model**
- **Energy scale calibration focus** \bullet

W Mass: Different Tactics

CDF and D0 employ very different methods, in order to capitalize on strength of their unique detectors

- lepton momentum measurement
 - Muon resolution = 3.2% (at $p_T = 45 \text{ GeV}$)
- Use $W \rightarrow e \upsilon$ and $W \rightarrow \mu \upsilon$ events
- **Detailed tracker model**
- Momentum scale calibration focus
 - + Using $J/\psi \rightarrow \mu\mu$, $\Upsilon \rightarrow \mu\mu$, $Z \rightarrow \mu\mu$

B. Ouinn University of Mississippi

- electron energy measurement
 - Energy resolution = 3.3% (at E = 45 GeV)
- Use $W \rightarrow ev$ events

 \leftarrow Using $Z \rightarrow ee$

- **Detailed calorimeter model**
- **•** Energy scale calibration focus

WMass: Systematic Uncertainty

Systematic uncertainty breakdown in m_T measurement

Source	$CDF\ m_T(\mu,\nu)$	$CDF\ m_T(e,\nu)$	$D \mathcal{O} \ m_T(e, \nu)$	
Experimental – Statistical power of the calibration sample.				
Lepton Energy Scale	7	10	16	
Lepton Energy Resolution	1	4	2	
Lepton Energy Non-Linearity			4	
Lepton Energy Loss			4	
Recoil Energy Scale	5	5		
Recoil Energy Resolution	7	7		
Lepton Removal	2	3		
Recoil Model			5	
Efficiency Model			1	
Background	3	4	2	
W production and decay model – Not statistically driven.				
PDF	10	10	11	
QED	4	4	7	
Boson p_T	3	3	2	

B. Quinn University of Mississippi

W Mass: D0 Result

B. Quinn University of Mississippi

W Mass: CDF Result

Method $(2.2 f b^{-1})$	M_W (MeV)	Method $(2.2 f b^{-1})$	M_W (MeV)
$m_T(\mu, \nu)$	$80379 \pm 16 (\text{stat})$	$m_T(e, \nu)$	80408 ± 19 (stat)
$p_T(\mu)$	80348 ± 18 (stat)	$p_T(e)$	80393 ± 21 (stat)
$\not\!$	80406 ± 22 (stat)	${\not\!\! E}_T(e,\nu)$	80431 ± 25 (stat)
Combination	$(2.2 f b^{-1})$	$80387 \pm 19Me$	V(syst + stat)

B. Quinn	
University	of Mississippi

WMass: New World Average

- Both CDF and D0 results reach precision of previous world average
- CDF result is most precise W mass measurement
- Theory uncertainties now become limitation
 - Reduce PDF uncertainty include forward electrons, use W charge asymmetry
- Full Tevatron data set can bring down uncertainty to 10 MeV!

CDF: <u>PRL **108**, 151803 (2012)</u> DØ: <u>PRL **108**, 151804 (2012)</u> <u>Tevatron Combination Note</u>

W Mass: New Higgs Constraint

- Both CDF and D0 results reach precision of previous world average
- CDF result is most precise W mass measurement
- Theory uncertainties now become limitation
 - Reduce PDF uncertainty include forward electrons, use W charge asymmetry
- Full Tevatron data set can bring down uncertainty to 10 MeV!

New indirect Higgs measurement still consistent with SM Higgs region allowed by direct searches

B. Quinn University of Mississippi

Other Results from Past Year

- CDF QCD: <u>http://www-cdf.fnal.gov/physics/new/qcd/QCD.html</u>
 - ✤ W+c: <u>CDF Note 10089</u>

DØ QCD: <u>http://www-d0.fnal.gov/Run2Physics/qcd/</u>

- ✤ Inclusive jets: <u>PRD 85, 052006 (2012)</u>
- ✤ Inclusive W+jet (p_T^{jet}): <u>PLB 705, 200 (2011)</u>

CDF EW: <u>http://www-cdf.fnal.gov/physics/ewk/</u>

- ZZ resonance: <u>PRD 85, 012008 (2012)</u>
- ✤ WZ: <u>arXiv:1202.6629</u>

DØ EW: <u>http://www-d0.fnal.gov/Run2Physics/wz/</u>

- ✤ WW/WZ: <u>PRL 108</u>, 181803 (2012)
- + Zγ: <u>PRD **85**</u>, 052001 (2012)
- + Wγ: <u>PRL **107**</u>, 241803 (2011)

- Full impact of QCD and Electroweak measurements using the full Tevatron data set are starting to be seen
 - + Extraction of fundamental parameters, e.g. α_s
 - Evaluating the best theoretical calculation models and improving PDFs
 - Providing well-measured backgrounds crucial for new physics searches
- Many more full data set measurements still to come
- Precision QCD and Electroweak results will be a very big part of the Tevatron legacy!

Backup Slides

B. Quinn University of Mississippi Users' Meeting 2012 June 12, 2012 35

Renormalization Group Equation

 $Q^2 \frac{\partial \alpha_{\rm s}(Q^2)}{\partial O^2} = \beta \left(\alpha_{\rm s}(Q^2) \right)$

 $\beta(\alpha_{\rm s}(Q^2)) = -\beta_0 \alpha_{\rm s}^2(Q^2) - \beta_1 \alpha_{\rm s}^3(Q^2) - \beta_2 \alpha_{\rm s}^4(Q^2) - \beta_3 \alpha_{\rm s}^5(Q^2) + \mathcal{O}(\alpha_{\rm s}^6)$

 α_{S} Extraction : DØ

B. Ouinn University of Mississippi

Goal: test pQCD (and α_s) **independent** of PDFs

\rightarrow Ratios of cross sections for 3-jet and 2-jet observables

June 12, 2012

- 1. Start with central inclusive jet sample (|y| < 1)
- Loop over all inclusive jets For each inclusive jet: count No. of neighboring jets

 in distance ΔR in (Δφ,Δy)
 with n = b n min
 - with $p_{Tnbr} > p_T^{min}_{nbr}$

3. Ratio: sum of all neighboring jets / total number of inclusive jets \rightarrow average number of neighboring jets R_{ΔR}(p_T, ΔR , p_T^{min}_{nbr})

Note: for $\Delta R < \pi \rightarrow$ only contributions from (at least) 3-jet events

→ $R_{\Delta R}$ looks at any jet and any neighboring jet ... more inclusive than $R_{3/2}$ (require to tag three leading jets) ... more inclusive than $R_{\Lambda\phi}$ (require to tag two leading jets)

CDF analysis

- Analyzed $2.2 f b^{-1}$.
- Uses $W \to e\nu$ and $W \to \mu\nu$ decay channels.
- Central leptons $|\eta| < 1$ with $30 < p_T < 55 \, GeV$
- Missing transverse energy $30 < E_T < 55 \, GeV$
- Transverse mass $60 < m_T < 100 \, GeV$
- Hadronic recoil momentum $u_T < 15 \, GeV$

DØ analysis

- Analyzed $4.3 fb^{-1}$ ($1 fb^{-1}$ analyzed before)
- Uses $W \to e\nu$ decay channel.
- Central electrons $|\eta| < 1.05$ with $p_T > 25 \, GeV$
- Transverse mass $50 < m_T < 200 \, GeV$
- Hadronic recoil momentum $u_T < 15 \, GeV$

	$W \rightarrow e \nu$ candidates	$W ightarrow \mu u$ candidates	Total
CDF $2.2 f b^{-1}$	470, 126	624,708	1,094,834
DØ $4.3 fb^{-1}$	1,677,394	-	1,677,394
$(+1 f b^{-1})$			2,177,224

B. Quinn University of Mississippi

- Hard recoil: Parametrized from $Z \rightarrow \ell \ell$ events.
- Soft recoil: Data min-bias (CDF) or min-bias + zero-bias (DØ) events.
- Lepton removal: Hadronic energy reconstructed as lepton.
- Out-of-cone FSR: Photons reconstructed as recoil.
- DF and DØ: Final tune with $Z \to \ell \ell$ momentum imbalance.

Source	Uncertainty (MeV)	
Experimental – Statistical power of the calibration sample.		
Lepton Energy Scale	7	
Lepton Energy Resolution	2	
Recoil Energy Scale	4	
Recoil Energy Resolution	4	
Lepton Removal	2	
Background	3	
Experimental Total	10	
W production and decay mo	del – Not statistically driven.	
PDF	10	
QED	4	
Boson p_T	5	
W model Total	12	
Total Systematic Uncertainty	15	
W Statistics	12	
Total Uncertainty	19	

Source	$m_T {\sf MeV}$	$p_T^e { m MeV}$	$ ot\!$		
Experimental – Z statistics driven!					
Electron Energy Scale	16	17	16		
Electron Energy Resolution	2	2	3		
Electron Energy Nonlinearity	4	6	7		
W and Z Electron energy	4	4	4		
loss differences					
Recoil Model	5	6	14		
Electron Efficiencies	1	3	5		
Backgrounds	2	2	2		
Experimental Total	18	20	24		
W production and decay mo	del – Not de	ependent o	n Z statistics!		
PDF	11	11	14		
QED	7	7	9		
Boson p_T	2	5	2		
W model Total	13	14	17		
Total Systematic Uncertainty	22	24	29		
W Statistics	13	14	15		
Total Uncertainty	26	28	33		

Ideas and developments to improve the model and theoretical uncertainties in the W mass measurement

- Use a wider lepton η-acceptance to be less sensitive to PDF uncertainties. It has been done before at the Tevatron (DØ Runl). PHYS.REV.D62:092006,2000
- Use Tevatron W lepton charge asymmetry to constrain the u/d PDF instead of low energy experiments. Available: CT10W PDF set. PHYS.REV.D82:074024,2010
- Explore lepton longitudinal momentum to extract the W mass. Concrete example: JHEP **1108**:023,2011
- Study QED uncertianties in the measurement using NLO QCD ⊕ EW generators. Two recent implementations in the POWHEG framework. ARXIV:1202.0465, ARXIV:1201.4804

m_{Limit} = 152 GeV

LHC

200

excluded

 $m_H = 92^{+0.34}_{-0.26} GeV$