

Precision Measurement of the W Boson Mass at CDF

Bodhitha Jayatilaka *Duke University*

45th Annual Fermilab Users Meeting Tollestrup Award Presentation

June 13, 2012

Photo: Reidar Hahn/Fermilab

• This measurement did take nearly five years

- This measurement did take nearly five years
- A true end-to-end analysis
 - Detailed understanding of theoretical model, detector response, and experimental environment
 - Bespoke tools
 - Convincing collaborators to read 400+ pages of documentation

- This measurement did take nearly five years
- A true end-to-end analysis
 - Detailed understanding of theoretical model, detector response, and experimental environment
 - Bespoke tools
 - Convincing collaborators to read 400+ pages of documentation
- End result: **single most precise** measurement of the W boson mass

The electroweak sector and M_W

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha_{EM}}{\sqrt{2}G_F} \frac{1}{(1 - \Delta r)}$$

 $G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2}$ $\alpha_{EM}(Q^2 = M_Z^2) = 1/127.918(18)$ $M_Z = 91.1876(21) \text{ GeV}/c^2$

 Radiative corrections Δr dominated by top and Higgs loops

M_W history and Higgs mass constraint

$$\label{eq:mt} \begin{split} m_t &= 173.2 \pm 0.9 \; \text{GeV} \\ M_W &= 80.399 \pm 0.023 \; \text{GeV} \\ m_H &= 92^{+34} \text{-}_{26} \; \text{GeV} \\ m_H &< 161 \; \text{GeV} \; @95\% \; \text{CL} \end{split}$$

 Δm_t of 0.9 GeV equivalent to ΔM_W of 6 MeV

M_W history and Higgs mass constraint

$$\begin{split} m_t &= 173.2 \pm 0.9 \; \text{GeV} \\ M_W &= 80.399 \pm 0.023 \; \text{GeV} \\ m_H &= 92^{+34} \text{-}_{26} \; \text{GeV} \\ m_H &< 161 \; \text{GeV} @95\% \; \text{CL} \end{split}$$

 Δm_t of 0.9 GeV equivalent to ΔM_W of 6 MeV

Can we exceed this precision with a single measurement?

Measuring M_W

- Use electron and muon decays of W bosons
- Lepton p⁻¹ carries most information: measure as precisely as possible (e.g. 0.01% at CDF)
 - Calibrate using dimuon resonances
- Measure transverse hadronic recoil
 - Sum of all transverse energy minus lepton
 - Calibrate using Z boson events
- Infer neutrino energy $p_T^{\nu} = -(p_T^{\prime} + u_T)$
 - Perform mass fits using transverse quantities $(p_T^I, p_T^v, and m_T)$

$$m_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos \Delta \theta_{\ell\nu})}$$

- Build parameterized (tunable) detector model
 - Accurate production model (incl. QED rad. corr.)
 - Calibrate tunable parameters using data (e.g. J/ Ψ, Z)

CDF II (2001-2011)

Analysis dataset: 2.2 fb⁻¹

Candidate events: *W*: 470,126 (*e*); 624,708 (μ)

Theoretical model

Boson p_T

- Calculate at NNLO using RESBOS
- Non-perturbative QCD controlled by tunable parameters
 - Fit parameters with measured Z boson p_T spectrum
- Uncertainty results in $\Delta M_W = 5 \text{ MeV}$

QED radiation

- Simulate LL FSR photons using PHOTOS
- Cross-check against HORACE
 - Study ISR/FSR, pair creation, etc.
- Uncertainty results in $\Delta M_W = 4 \text{ MeV}$

Track momentum scale

- Foundation of analysis is track p_T measurement with the COT
- Perform alignment using cosmic ray data: $\sim 50 \mu m \rightarrow \sim 5 \mu m$ residual
- Calibrate scale using large sample of dimuon resonances $(J/\psi, \Upsilon)$
 - Span a large range of pT
 - Flatness is a test of dE/dx modeling

EM energy scale

- Apply calibrated track momentum scale to set EM scale
- *E/p* of *W* and *Z* events
 - Overall scale from peak
 - Radiative tail used to tune material model

Ε

22

Cross-check and further calibration with M_Z

- Perform blinded measurement of Z mass using scales not calibrated to Mz
- Most precise measurement of M_Z at a hadron collider!
 - Comparison to LEP value of M_Z=91188±2 MeV is a powerful cross-check of calibration
- After unblinding, M_z added as further calibration to both track momentum and EM energy scales
 - Combined: $\Delta M_W = 7$ MeV (momentum scale), $\Delta M_W = 10$ MeV (EM scale)

Recoil

- Measured recoil: all calorimeter energy minus measured lepton
 - Contains 1) hard recoil from hadronic activity in W/Z event, 2) underlying event/spectator interaction energy
- Tune using Z and minimum-bias data
- Validate using measured recoil in W events

11

60

40

20

<u>0</u> -15

-10

-5

0

5

15

10 15 u_{ll} (W→μν) (GeV)

Example mass fits

- All fits kept **blinded** during analysis
 - Random, common, offset from [-75,+75] MeV added to all fits
 - Offset only removed after analysis is frozen

			CDF II	$\int L dt = 2.2 \text{ fb}^{-1}$		
Fit	Fit result (MeV)	χ²/dof	Muons: p_T^v	← 80406 ± 22		
W→ev (m⊤)	80408±19	52/48	Muons: p ^l _	► 80348 ± 18		
W→ev (p⊤ ^l)	80393±21	60/62				
W→ev (p _T ^v)	80431±25	71/62	Muons: m _T	• 80379 ± 16		
<i>W→µ</i> ∨ (m⊤)	80379±16	57/48	Electrons: p_{-}^{v}	 80431 ± 25		
$W \rightarrow \mu \nu (p_T)$	80348±18	58/62				
<i>W→µ</i> ν (p⊤ ^ν)	80406±22	82/62	Electrons: p _T	80393 ± 21		
			Electrons: m _T	🔶 80408 ± 19		
			80100 80200 80300 80400 80500 80600 W boson mass (MeV/c ²)			

Combined results

• All electron fits combined

M_W = 80406 ± 25 MeV, χ²/dof = 1.4/2 (49%)

All muon fits combined
M_W = 80374 ± 22 MeV, χ²/dof = 4/2 (12%)

• All fits combined

 $M_W = 80387 \pm 19$ MeV, χ^2 /dof = 6.6/5 (25%)

Combine using *BLUE* L. Lyons, D. Gibaut, and P. Clifford, NIM A **270**, 110 (1988).

Combined uncertainties

Source	Uncertainty 2.2 fb ⁻¹ (MeV)
Lepton energy scale	7
Lepton energy resolution	2
Recoil energy scale	4
Recoil energy resolution	4
Lepton removal	2
Backgrounds	3
p⊤ (W) model	5
PDFs	10
QED radiation	4
Total systematics	15
W statistics	12
Total	19

$M_W = 80387 \pm 12_{stat} \pm 15_{syst} \text{ MeV}/c^2$

Combined uncertainties

	Source	Uncertainty 2.2 fb ⁻¹ (MeV)	Uncertainty 0.2 fb ⁻¹ (MeV)
	Lepton energy scale	7	23
Statistics limited by control data	Lepton energy resolution	2	4
control data	Recoil energy scale	4	8
	Recoil energy resolution	4	10
	Lepton removal	2	6
	Backgrounds	3	6
	p⊤ (W) model	5	4
Theory based	PDFs	10	11
(external inputs)	QED radiation	4	10
	Total systematics	15	34
	W statistics	12	34
	Total	19	48

$M_W = 80387 \pm 12_{stat} \pm 15_{syst} \text{ MeV}/c^2$

Tevatron and world combinations

nb: 2009 world average $M_W = 80399 \pm 23 \text{ MeV}$

Tevatron and world combinations

nb: 2009 world average $M_W = 80399 \pm 23 \text{ MeV}$

W mass vs. top mass

FNAL Users' Meeting, 6/13/12

W mass vs. top mass

W mass vs. top mass

- An award for the entire CDF Collaboration Tevatron physics program
 - $\Delta M_W = 16$ MeV is a true legacy measurement

- An award for the entire CDF Collaboration Tevatron physics program
 - $\Delta M_W = 16$ MeV is a true legacy measurement
- A team effort over ~5 years

- An award for the entire CDF Collaboration Tevatron physics program
 - $\Delta M_W = 16$ MeV is a true legacy measurement
- A team effort over ~5 years

http://www-cdf.fnal.gov/physics/ewk/2012/wmass/

Measurement of the W Boson Mass with 2.2/fb of Data at CDF II Bodhitha Jayatilaka, Ashutosh Kotwal, Ravi Shekhar, Siyuan Sun, Yu Zeng Duke University Oliver Stelzer-Chilton TRIUMF Larry Nodulman Argonne National Laboratory Daniel Beecher, Ilija Bizjak, Mark Lancaster, Sarah Malik, Tom Riddick, David Waters University College London Christopher Hays, Peter Renton University of Oxford

- An award for the entire CDF Collaboration Tevatron physics program
 - $\Delta M_W = 16$ MeV is a true legacy measurement
- A team effort over ~5 years

http://www-cdf.fnal.gov/physics/ewk/2012/wmass/

Measurement of the W Boson Mass with 2.2/fb of Data at CDF II Bodhitha Jayatilaka, Ashutosh Kotwal, Ravi Shekhar, Siyuan Sun, Yu Zeng Duke University Oliver Stelzer-Chilton TRIUMF Larry Nodulman Argonne National Laboratory Daniel Beecher, Ilija Bizjak, Mark Lancaster, Sarah Malik, Tom Riddick, David Waters University College London Christopher Hays, Peter Renton University of Oxford

- Thanks to everyone else at CDF who helped
 - And the Tevatron

Review committee: F. Bedeschi, M. Shochet, B. Ashmanskas, K. Hatakeyama

- An award for the entire CDF Collaboration Tevatron physics program
 - $\Delta M_W = 16$ MeV is a true legacy measurement
- A team effort over ~5 years

http://www-cdf.fnal.gov/physics/ewk/2012/wmass/

Measurement of the W Boson Mass with 2.2/fb of Data at CDF II Bodhitha Jayatilaka, Ashutosh Kotwal, Ravi Shekhar, Siyuan Sun, Yu Zeng Duke University Oliver Stelzer-Chilton TRIUMF Larry Nodulman Argonne National Laboratory Daniel Beecher, Ilija Bizjak, Mark Lancaster, Sarah Malik, Tom Riddick, David Waters University College London Christopher Hays, Peter Renton University of Oxford

- Thanks to everyone else at CDF who helped
 - And the Tevatron

Review committee: F. Bedeschi, M. Shochet, B. Ashmanskas, K. Hatakeyama

• Thanks to the URA, Tollestrup award committee, and UEC

Backup

Uncertainty projections

- Projection assumes PDF+QED errors (11 MeV) fixed
 - Become limiting uncertainty for measurements with full Tevatron dataset

Z mass with electron tracks

- Measurement made with only track momenta of Z electrons
- \bullet Validates material model and application of momentum scale to high-p_T electron tracks

Parton distribution functions and backgrounds

PDFs

- Utilize CTEQ6.6 PDF as default
- Evaluate 90% CL uncertainty eigenvectors for MSTW2008 and CTEQ6.6 (consistent)
- Use 68% CL MSTW2008 to determine systematic ΔM_W =10 MeV Backgrounds
 - Estimated using a combination of data and MC-driven methods
 - Except $Z \rightarrow \mu\mu$ (lost forward muon), backgrounds are small
 - Include all estimated background shapes in final templates

Background		Δm_W (MeV)]
	Fraction of W data (%)		mτ		p_T		$p_{T^{\nu}}$		muor
Z→II	7.35±0.09	0.139±0.014	2	1	4	2	5	1	
W→TV	0.880±0.004	0.93±0.01	0	1	0	1	0	1	electro
QCD	0.035±0.025	0.39±0.14	1	4	1	2	1	4	
Decay-in-flight	0.24±0.02		1		3		1		
Cosmic Rays	0.02±0.02		1		1		1		
Total			3	4	5	3	6	4	

Uncertainty progress

