CDMS and Direct Dark Matter Searches at FNAL

Atoms
4.6%
TODAY
Matter
23%

Ben Loer
2012 FNAL Users' Meeting
Jun 13, 2012

Outline

- Introduction
- The case for cold dark matter
- Direct dark matter search basics
- Dark matter searches at FNAL
- CDMS: Cryogenic Dark Matter Search

Evidence for dark matter: compelling at all scales

Single galaxies

Distance from center of galaxy \longrightarrow

Lots of possible candidates

- Most focus on WIMP: Weakly Interacting Massive Particle
- Cosmological relic density naturally leads to $\sim \mathrm{GeV}-\mathrm{TeV}$ particle with weak-scale annihilation cross-sec
- Bonus: matches neutralino in many
 SUSY models

WIMP Search Challenges

- Sharply falling exponential spectrum
- Tiny overall rate: ~few/ton/year
- Compare to "clean' copper,
~107/ton/year

Total WIMP-induced Nuclear Recoil Rate Above Threshold

1 fingerprint:
~20 decays/year
Need: Low threshold, very low backgrounds

Background Rejection

- Gammas are largest background, but they have different energy deposition mechanism
- Alphas are usually higher energy, at surface
- Neutrons mimic WIMPs; good for calibration, bad for background - need lots of shielding

Annual modulation

- WIMP signals expected to have annual modulation
- Due to motion of earth relative to sun through "WIMP wind"
- "Smoking gun" dark matter signature

Annual modulation: Some hints

- DAMA, CoGeNT, and CRESST see low-energy signals compatible with ~ 7 GeV WIMP
- DAMA sees annual modulation at expected phase with >7 sigma
- CoGeNT sees (statistically) weaker modulation

Where is the community at now*?

*For loose definitions of 'now'

Direct WIMP Searches at FNAL

COUPP

Bubble chamber

DAMIC: CCDs

TRACK LENGTH GIVES PARTICLE DISCRIMINATION

- "Dots" are diffusionlimited hits (nuclear recoils)

LIMIT-HOLDER FOR LOW-MASS WIMPS

- Ultra low threshold (40 eV !)

Moving to SNOLAB with 10 g of CCDs and neutron shield

COUPP: Bubble Chamber

- Nucleation threshold insensitive to MIPs
- Acoustic sensors provide alpha rejection
- 4kg chamber at SNOLAB leading spin-dependent result
- Upgrading to 60 kg late 2012

DarkSide: Dual-phase argon TPC

Argon TPC background rejection

Primary scintillation gives energy, PSD

Secondary scintillation gives position Ratio gives ionization yield ($\sim \mathrm{dE} / \mathrm{dx}$)!

Log(S2/S1) vs F 90
 Discrimination power, sensitivity depend ${ }^{200}$ exponentially on light yield!

Fast pulse

DarkSide Highlights

- Underground argon reduces ${ }^{39} \mathrm{Ar}$ background > X100
- DS-10 kg measured 9 p.e./keV light yield: best in field
- DS-50 kg under construction now; employs high-efficiency neutron veto and huge water shield
- Data incoming early 2013, plan for 3-year campaign

CDMS: Cold Germanium Crystals

- ZIP: Z-sensitive Ion and Phonon detector
- Recoil in Ge crystal ionizes electrons and excites the lattice (phonons)
- Apply an electric field> collect and measure free electrons/holes
- TES measures phonons

CDMS

- Neutrons/WIMPs hit nucleus, excite more phonons than ions
- Ratio of ionization/phonon signal removes gammas

CDMS II Low Threshold Analysis -

2011

- Based on 2 years of data already analyzed at 10 keV threshold
- Push analysis down to 2 keV threshold
- Backgrounds higher, less well understood
- Net result: no evidence for WIMP signal above background.
- The result (solid black) excludes most of DAMA and CoGeNT allowed regions

CDMS II Annual Modulation Search

- 2012

- No evidence for annual modulation in nuclear recoil data (blue)
- Tension with CoGeNT
 (orange), which also uses germanium in Soudan

SuperCDMS: Enter the iZIP

- CDMS II 1okeV threshold result limited by surface events
- iZIPs have Interleaved phonon and charge sensors on both sides
- Surface events show up clearly on one side or the other
- Reduces surface background by > x50,
- Improves fiducial volume by $\sim x 2$

SuperCDMS Soudan: Running now

- 15 iZIPs: 5 towers of 3 iZIPs each, total gkg
- 2 with implanted Pb210 sources to measure surface rejection

- Started taking data in March, plan to run for 2 years

SuperCDMS SNOLAB: Coming soon!

- Planned at least 100 kg total mass (72 iZIPs)
- Also investigating upgrade to a liquid scintillator active neutron veto
- Deeper site + better material screening +
iZIPs + neutron veto =
o background!

SuperCDMS SNOLAB
 Projected Sensitivity

Extra material

WIMP Technology Distribution

CDMS II Installation

Tower assembly

Shielding assembly

DarkSide

- Use of underground argon reduces ${ }^{39} \mathrm{Ar}$ background by to

DarkSide

- 10 kg prototype operating at LNGS
- 9 p.e./keV light yield best reported for argon

Tevatron exclusion

CDMS II Results - 2009

- Dec 2009: then best spin- 12 , Pastions independent sensitivity - Limited by surface event .

Surface Events in CDMS II ZIPs

- Limiting background in CDMS II 10 keV threshold analysis was surface events
- Free electrons/holes have some ballistic motion
- Some is lost for events near surface
- Pushes yield down into WIMP search box

