Vertex finding with Pandora Deep Learning

Andy Chappell
05/07/2022
DUNE UK Collaboration Meeting

WARWICK

Reminder

- Identifying the neutrino interaction vertex seems like something a CNN should be good at
- But defining a single point/region as the signal means you need a huge number of events to train the network

True pixel classification

Heat map generated from 3 classified pixels

Evolving the network

- Preliminary results were quite reasonable
- 68% of events yielded a reconstructed vertex within $\sim 2.6 \mathrm{~cm}$ of the true vertex
- Compared to $\sim 2.1 \mathrm{~cm}$ for the standard BDT-based reconstruction
- (No fiducial volume cuts applied)
- Problem: Resolution
- Events are sampled to a 256×256 pixel image per view
- If the event spans more than a couple of metres the pixels begin to represent large regions, limiting the network resolution
- Solution: Add a second pass
- To address this problem, take the result of the first pass and zoom in to this region to identify the vertex at higher precision

Training the second pass

- We want this to be quick, so we compromise
- Smaller images at 128×128 pixels
- $64 \mathrm{~cm} \times 64 \mathrm{~cm}$ event region, allowing for 0.5 cm resolution
- If the first pass vertex is off by much more than 32 cm , pass 2 probably won't help
- Will comment on potential mitigation later
- To define the training dataset I take a perturbed version of the true vertex
- Gaussian $(0 \mathrm{~cm}, 15 \mathrm{~cm})$ perturbation in X and Z
- Treat this as the centre of the image
- Our first pass reconstruction will be imperfect and we want to ensure the network doesn't simply learn to pick the centre of the image in the second pass
- A check is applied to ensure that the region contains hits
- No check on true vertex containment because this technique can, in principle, find uncontained vertices, so we should let it try

Training the second pass

- Left: Pass 1, full event (cropped here), event aspect ratio not (necessarily) respected
- Right: Pass 2, 64x64 cm region of interest, note non-central true vertex

Training the second pass

- Second pass network appears to train well
- W view indicates there may be scope for further improvement with tweaks to the training procedure
- Given 19 distance classes to choose from, classification accuracy is quite good
- ~80\% of pixels correctly classified
- ${ }^{2} 94 \%$ of pixels either correctly classified or placed in one of the classes adjacent to the correct class

Example NC DIS Event Reconstruction

WARWICK

- 3D hits projected into the W view
- A well reconstructed vertex yields good reconstruction of final state particles

Reco - True Vertex Deltas

WARWICK

- Compared Pandora, and Pandora's two DL passes on a 50,000 event sample
- Even split v_{μ} and v_{e} MCC $111 \times 2 \times 6$
- True vertex must be within the fiducial volume:

$$
x:(-310,310) \mathrm{cm} ; \quad \mathrm{y}:(-550,550) \mathrm{cm} ; \quad \mathrm{z}:(50,1244) \mathrm{cm} ;
$$

- Unsurprisingly, second pass improvement limited when first pass error is large

Reco - True Vertex Deltas

- DL vertexing shows less bias and less population of tails
- Peaks at zero in X and Y
- Peaks at -0.1 cm in Z
- Standard Pandora has a sharper peak in x
- Suspect this could be driven by lower network resolution in x

Leading particle reconstruction efficiency

WARWICK

- Fraction of true leading particles with a matching PFP
- No cuts applied

Leading particle reconstruction efficiency

- Fraction of true leading particles with a matching PFP
- No cuts applied

Leading particle reconstruction efficiency

WARWICK

- Fraction of true leading particles with a matching PFP
- No cuts applied

Next steps for vertexing

- Pull request in preparation
- Aim to release initial version next week
- Further refinement in future releases
- Dealing with large pass 1 errors
- Picking entirely the wrong region in pass 1 means pass 2 isn't too helpful
- Identify a few candidates in pass 1 and zoom in on each
- Multi-view/pass refinement
- Check consistency of positioning between passes
- Can use detector geometry information to correlate heat maps and refine 3D position
- Vertex finding in atmospheric samples in testing
- Vertex finding in Vertical Drift geometry
- Secondary vertexing
- It may be possible to extend this method to find secondary vertices as well

