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• θ12: “solar mixing angle” 
• mixes 𝜈e with 𝜈1 and 𝜈2

• θ23: “atmospheric mixing angle” 
• mixes 𝜈𝜇 with 𝜈𝜏

θ13: mixes 𝜈e with 𝜈3  
δ:  complex phase
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solar atmospheric

�m2
32 = 2.4⇥ 10�3 eV2

�m2
21 = 7.8⇥ 10�5 eV2

“reactor”

Pontecorvo–Maki–Nakagawa–Sakata Matrix

• “Small” angle θ13  mixes 𝜈e with 𝜈3  

• Look for 𝜈e mixing driven by Δm2
32

• Reactor: an?-𝜈e  disappearance

• Accelerator: 𝜈e appearance  in 𝜈𝜇 beam 

→ sensi?ve to θ13  and 𝛿 (and MO).
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CP Violation involving neutrinos might provide support for Leptogenesis
as mechanism to generate the Universe’s matter-antimatter asymmetry.

Caveat: 
No direct evidence for Leptogenesis, since a model is needed to connect the low-scale 
CPV observed here to high-scale CPV for heavy neutrinos that lead to Leptogenesis.

The PMNS Matrix and CP violation
complex CP phase
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Neutrino flavour oscillations

P (⌫↵ ! ⌫�) = sin2(2✓) sin2
✓
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◆

⌫↵ component

⌫� component

Rate driven by mass splitting Δm2

Amplitude driven by 
mixing angle sin2(2θ)
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Baseline, energy, and frequency

CERN Courier, 2020
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Optimizing detectors for neutrino oscillations

L ≈ 300 km

L = 1300 km

• no maJer effects.
• use narrow width neutrino beam (off axis) with E < 1 GeV
• observe first oscilla?on maximum
• “coun?ng experiment”

• maJer effects
• use broad-band neutrino beam (on axis).
• observe first and second oscilla?on maximum.
• unfold CP and MO effects through energy dependence

Water Cherenkov (HK)

Liquid argon (DUNE)
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L/E(1st max) = 500 km/GeV 
L/E (2nd max) = 1700 km/GeV
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Off-axis vs on-axis beams
T2K at 2.5 degrees

DUNE on-axis beam
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νe appearance gives access to δ
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• νe appearance amplitude 
depends simultaneously on 
θ13, θ23, δCP, and matter 
effects –

• Measurements of all four 
possible in a single 
experiment.
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depends simultaneously on 
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• νe appearance amplitude 
depends simultaneously on 
θ13, θ23, δCP, and maJer 
effects –

• Measurements of all four 
possible in a single 
experiment.

• Need to resolve degeneracies 
(e.g., MO vs. CP).
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•Measure flavour change as a function of energy over a long distance.
• Starting with a muon-neutrino beam, we observe muon-neutrino 
disappearance and electron-neutrino appearance.
•Measure event rates and not the flux directly.
•Measurement is a convolution of the oscillation probabilities P, the 
neutrino flux 𝛷, the cross sections 𝜎, and the detector response T.

How to measure LBL neutrino oscillations

<latexit sha1_base64="3PiLoLNJ2BDoc3rD/qvmMZ9Yx24="></latexit>
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DUNE in a Nutshell

FD

ND

1300 km 

1. A high-power, wide-band neutrino beam (~ GeV energy range).
2. A ≈ 70 kt liquid-argon Far Detector in South Dakota, located 

1478 m underground in a former gold mine.
3. A Near Detector located approximately 575 m from the neutrino 

source at Fermilab close to Chicago.

May 2018
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Proton Improvement Plan (PIP-II)
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Proton Improvement Plan (PIP-II)
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DUNE Caverns
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Central Utility Cavern Pilot Drift Breakthrough
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12 Feb 2022



Cavern is being constructed
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Module 1: Horizontal Drift

• 150 Anode Plane Assemblies (APA)
• 130 in UK and 20 in US

DUNE-UK 4 July 202221

ProtoDUNE at CERN



Module 2: Vertical Drift

22

Successful tests at CERN, 
leading to design of ProtoDUNE
Module-0 for Vertical Drift.
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A ProtoDUNE-HD Data Event
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Reconstruction of events performed by PANDORA framework 
with the use of Grid computing resources, both areas UK-led.



DUNE Phase I Near Detector
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ND-LAr measures neutrino 
interac2ons on argon using TPC 
technology (equivalent to FD).

TMS/LAr sideways movement 
(PRISM) probes different neutrino 
energies

SAND provides on-
axis monitoring of 
Kme-stability of beam

TMS measures muons 
not captured by ND-LAr

• Near Detectors constrain systematic uncertainties for long-baseline oscillation analysis
Neutrino flux & cross-section, and detector systematics

• In addition, >100 million interactions will also enable a rich non-oscillation physics programme (e.g. BSM).

We expect to replace 
TMS by a gas-argon TPC 
for Phase-II.

SystemaKcs



DUNE PRISM
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• FD flux ≠ ND flux → uncertainties in energy extrapolation
• ND flux changes with angle due to pion decay kinematics
• Take ND data in different fluxes → build linear 

combination to match FD oscillated spectra
• Robust analysis approach with very minimal x
• dependence on interaction modeling



DUNE PRISM
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33 m

𝛎

𝛎 𝛎

𝛎

𝛎
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𝜈 Flux                            𝜈-Ar InteracKons               Far Detector                     OscillaKons

Near Detector

ND and FD Spectra

StaKsKcal Test Systematics

Final SensiKvity
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DUNE νμ disappearance & νe appearance

νμ

an$-νμ

νe

anti-νe
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variation with
mass ordering

variation with 𝛿CP

DUNE simulation

DUNE: Science and Status

𝜈e �͞�

𝜈e �͞�𝛍

𝛍
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DUNE FD1-HD 
simulation
2.5 GeV νe→e p π0

7 years



DUNE: Sensitivity to CP Violation
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§ 5σ discovery potential for CP violation over >50% of δCP values
§ 7-16° resolution to δCP, without reliance on other experiments



DUNE: Sensitivity to Mass Ordering
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Regardless of the values of other parameters, and without dependence on other experiments, 
DUNE has unprecedented and unrivaled ability to defini?vely resolve the mass ordering



DUNE: Unitarity tests

32

● World-leading precision on Δm2
32 and θ23, including octant, and novel 

PRISM technique that is less sensitive to systematic effects
● Ultimate reach does not depend on external θ13 measurements, and 

comparison with reactor data directly tests PMNS unitarity

DUNE-UK 4 July 2022

Daya Bay unc.



HyperKamiokande in a Nutshell
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• 8.4 times larger fiducial mass (190 kiloton) than SK with double-sensitivity PMTs
• New (IWCD) and upgraded (@280m) Near Detectors to control systematic uncertainties.
• J-PARC neutrino beam to be upgraded from 0.5 to 1.3 MW



HK Access Tunnel
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1 Nov 2021
Start of tunnel excava3on

25 Feb 2022 2021
Start of tunnel excava5on

34

Access tunnel (1873 m) completed  
in February 2022 and work on 
approach tunnel has started.

Commissioning 2026
Far Detector operation in 2026



HK: Sensitivity to CP Violation
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• Due to short baseline 
HK cannot resolve 
MO/CP degeneracy.

• If MO unknown, beam 
analysis less sensitive 
for some values of δ.

• Joint atmospheric and 
beam analysis 
increases sensitivity.



Other mass hierarchy measurements

● JUNO can determine mass ordering by differentiating rapid wiggle with 
unprecedented energy resolution.

● Large water Cherenkov detectors can model νe/νe flux and cross sections and 
look for a small differences in the up/down asymmetry

DUNE-UK 4 July 2022

Super-K: PTEP Vol. 2019, Iss. 5 (2019)JUNO: Snowmass2021 JUNO LOI
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CP Violation Phase

CP�
0

1

2

3

4

5

)⇥
Si

gn
ific

an
ce

 (

0
2
⇤ ⇤

2
⇤3 ⇤2

NOvA FD ⌅POT 2010◊+ 12.5⌅POT equiv 2010◊13.6 NO
vA Prelim

inary

NH Lower octant
NH Upper octant
IH Lower octant
IH Upper octant

• Using 𝜃13 from reactor experiments
• CP conversa?on (0,𝜋) excluded at 90% 

confidence level
• Normal ordering preferred

• Sensi?vity to combina?on of CP phase and MO
• Normal ordering slightly preferred (1σ)
• Exclude IO, δ = π/2 at > 3σ
• Disfavour NO, δ = 3π/2 at ~2σ
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• NOvA does not see strong 
neutrino/antineutrino asymmetry in 
electron neutrino appearance.

• T2K observes more electron 
neutrino appearance than electron 
antineutrino appearance.

• Current data are inconclusive –
expect some improvements with 
further running.

• Need next-generation experiments 
to discover CPV and resolve mass 
ordering.

NOvA and T2K
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DUNE Phases
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DUNE Phase I:
• Ramp up to 1.2 MW beam intensity
• Two 17kt LAr TPC FD modules
• Near detector: ND-LAr + TMS (movable) + SAND

DUNE Phase II:
• Fermilab proton beam upgrade to 2.4 MW
• Four 17kt LAr TPC FD modules
• Near detector: ND-LAr + ND-GAr (movable) + SAND

Phase II – full DUNE



DUNE Phase I
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• Only experiment with 5σ mass ordering capability regardless of true parameters
• Discovery of CPV at 3σ if CP violation is large
• World-leading precision on Δm2

32, and other oscillation measurements



DUNE Phase II

DUNE-UK 4 July 202241

• DUNE needs full Phase II scope to 
achieve precision physics goals 
defined in P5 report

• Timescale for precision physics is 
driven by achieving full scope on 
aggressive Gmescale, early ramp-up 
is not as relevant

• A second phase of DUNE (Modules 
3 and 4) can also extend physics 
capabiliGes, e.g. solar neutrinos or 
neutrinoless DBD.



DUNE Phase II
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DUNE Phase II
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• To achieve the precision physics goals, including CPV sensitivity for a broad range of δCP 
values, all three upgrades are required

• Plots show the effect of removing one of them, resulting in a significant loss of sensitivity



Summary

44

• DUNE Phase I (start operation in 2029):
- Two modules (HD/VD)
- Beam  (1.2 MW) in 2030
- Near Detector (SAND, TMS+NDLAr, PRISM) in 2031
• DUNE Phase II (needed to reach physics goals)
- Modules 3 and 4 (ongoing R&D)
- Beam upgraded to 2.4 MW
- Upgrade to Near Detector (ND-GAr)
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